N, F-enriched inorganic/organic composite interphases to stabilize lithium metal anodes for long-life anode-free cells

被引:9
作者
Hu, Anjun [1 ]
Chen, Wei [1 ]
Pan, Yu [3 ]
Zhu, Jun [1 ]
Li, Yinuo [1 ]
Yang, Hui [4 ]
Li, Runjing [3 ]
Li, Baihai [2 ]
Hu, Yin [1 ,2 ]
Chen, Dongjiang [1 ]
Li, Fei [2 ]
Long, Jianping [3 ]
Yan, Chaoyi [1 ]
Lei, Tianyu [1 ]
机构
[1] Univ Elect Sci & Technol China, State Key Lab Elect Thin Film & Integrated Devices, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 610054, Peoples R China
[3] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Peoples R China
[4] China Tower Corp Ltd, Key Lab Renewable Energy, China Tower Ind Pk,9 Dongran North St, Beijing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium metal anode; Composite SEI; Dendrites; -free; Anode -free cell; SOLID-ELECTROLYTE INTERPHASE;
D O I
10.1016/j.jcis.2023.06.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The practical application of lithium metal batteries is considered to be one of the most promising successors for lithium-ion batteries due to their ability to meet the high-energy storage demands of modern society. However, their application is still hindered by the unstable solid electrolyte interphase (SEI) and uncontrollable dendrite growth. In this study, we propose a robust composite SEI (C-SEI) that consists of a fluorine doped boron nitride (F-BN) inner layer and an organic polyvinyl alcohol (PVA) outer layer. Both theoretical calculations and experimental results demonstrate that the F-BN inner layer induces the formation of favourable components (LiF and Li3N) at the interface, promoting rapid ionic transport and inhibiting electrolyte decomposition. The PVA outer layer acts as a flexible buffer in the C-SEI, ensuring the structural integrity of the inorganic inner layer during lithium plating and stripping. The C-SEI modified lithium anode shows a dendrite-free performance and stable cycle over 1200 h, with an ultralow overpotential (15 mV) at 1 mA cm-2 in this study. This novel approach also enhances the stability of capacity retention rate by 62.3% after 100 cycles even in anode-free full cells (C-SEI@Cu||LFP). Our findings suggest a feasible strategy for addressing the instability inherent in SEI, showing great prospects for the practical application of lithium metal batteries.
引用
收藏
页码:448 / 456
页数:9
相关论文
共 54 条
  • [1] Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries
    Assegie, Addisu Alemayehu
    Chung, Cheng-Chu
    Tsai, Meng-Che
    Su, Wei-Nien
    Chen, Chun-Wei
    Hwang, Bing-Joe
    [J]. NANOSCALE, 2019, 11 (06) : 2710 - 2720
  • [2] Assegie AA, 2018, NANOSCALE, V10, P6125, DOI [10.1039/c7nr09058g, 10.1039/C7NR09058G]
  • [3] Effects of Concentrated Salt and Resting Protocol on Solid Electrolyte Interface Formation for Improved Cycle Stability of Anode-Free Lithium Metal Batteries
    Beyene, Tamene Tadesse
    Jote, Bikila Alemu
    Wondimkun, Zewdu Tadesse
    Olbassa, Bizualem Wakuma
    Huang, Chen-Jui
    Thirumalraj, Balamurugan
    Wang, Chia-Hsin
    Su, Wei-Nien
    Dai, Hongjie
    Hwang, Bing-Joe
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (35) : 31962 - 31971
  • [4] Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries
    Beyene, Tamene Tadesse
    Bezabh, Hailemariam Kassa
    Weret, Misganaw Adigo
    Hagos, Teklay Mezgebe
    Huang, Chen-Jui
    Wang, Chia-Hsin
    Su, Wei-Nien
    Dai, Hongjie
    Hwang, Bing-Joe
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (08) : A1501 - A1509
  • [5] Busche MR, 2016, NAT CHEM, V8, P426, DOI [10.1038/nchem.2470, 10.1038/NCHEM.2470]
  • [6] A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments
    Chang, Zhi
    Yang, Huijun
    Zhu, Xingyu
    He, Ping
    Zhou, Haoshen
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [7] Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity
    Chen, Aosai
    Zhao, Chenyang
    Gao, Jiaze
    Guo, Zhikun
    Lu, Xingyuan
    Zhang, Jiachi
    Liu, Zeping
    Wang, Ming
    Liu, Nannan
    Fan, Lishuang
    Zhang, Yu
    Zhang, Naiqing
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (01) : 275 - 284
  • [8] Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries
    Chen, Hao
    Yang, Yufei
    Boyle, David T.
    Jeong, You Kyeong
    Xu, Rong
    de Vasconcelos, Luize Scalco
    Huang, Zhuojun
    Wang, Hansen
    Wang, Hongxia
    Huang, Wenxiao
    Li, Huiqiao
    Wang, Jiangyan
    Gu, Hanke
    Matsumoto, Ryuhei
    Motohashi, Kazunari
    Nakayama, Yuri
    Zhao, Kejie
    Cui, Yi
    [J]. NATURE ENERGY, 2021, 6 (08) : 790 - 798
  • [9] Stable artificial solid electrolyte interphase films for lithium metal anode via metal-organic frameworks cemented by polyvinyl alcohol
    Fan, Lishuang
    Guo, Zhikun
    Zhang, Yu
    Wu, Xian
    Zhao, Chenyang
    Sun, Xun
    Yang, Guiye
    Feng, Yujie
    Zhang, Naiqing
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (01) : 251 - 258
  • [10] Highly stable lithium metal anode with near-zero volume change enabled by capped 3D lithophilic framework
    Feng, Yangyang
    Zhang, Chaofan
    Jiao, Xingxing
    Zhou, Zixuan
    Song, Jiangxuan
    [J]. ENERGY STORAGE MATERIALS, 2020, 25 : 172 - 179