Evaluating ChatGPT as an adjunct for the multidisciplinary tumor board decision-making in primary breast cancer cases

被引:66
作者
Lukac, Stefan [1 ]
Dayan, Davut [1 ]
Fink, Visnja [1 ]
Leinert, Elena [1 ]
Hartkopf, Andreas [1 ]
Veselinovic, Kristina [1 ]
Janni, Wolfgang [1 ]
Rack, Brigitte [1 ]
Pfister, Kerstin [1 ]
Heitmeir, Benedikt [1 ]
Ebner, Florian [1 ,2 ]
机构
[1] Univ Hosp Ulm, Dept Gynecol & Obstet, Prittwitzstr 43, D-89075 Ulm, Germany
[2] Gynakol Gemeinschaftspraxis Freising & Moosburg, Munich, Germany
关键词
Artificial intelligence; Breast cancer; Multidisciplinary tumor board; ChatGPT; ARTIFICIAL-INTELLIGENCE; AGREEMENT; IMPACT;
D O I
10.1007/s00404-023-07130-5
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
BackgroundAs the available information about breast cancer is growing every day, the decision-making process for the therapy is getting more complex. ChatGPT as a transformer-based language model possesses the ability to write scientific articles and pass medical exams. But is it able to support the multidisciplinary tumor board (MDT) in the planning of the therapy of patients with breast cancer?Material and MethodsWe performed a pilot study on 10 consecutive cases of breast cancer patients discussed in MDT at our department in January 2023. Included were patients with a primary diagnosis of early breast cancer. The recommendation of MDT was compared with the recommendation of the ChatGPT for particular patients and the clinical score of the agreement was calculated.ResultsResults showed that ChatGPT provided mostly general answers regarding chemotherapy, breast surgery, radiation therapy, chemotherapy, and antibody therapy. It was able to identify risk factors for hereditary breast cancer and point out the elderly patient indicated for chemotherapy to evaluate the cost/benefit effect. ChatGPT wrongly identified the patient with Her2 1 + and 2 + (FISH negative) as in need of therapy with an antibody and called endocrine therapy "hormonal treatment".ConclusionsSupport of artificial intelligence by finding individualized and personalized therapy for our patients in the time of rapidly expanding amount of information is looking for the ways in the clinical routine. ChatGPT has the potential to find its spot in clinical medicine, but the current version is not able to provide specific recommendations for the therapy of patients with primary breast cancer.
引用
收藏
页码:1831 / 1844
页数:14
相关论文
共 26 条
[1]  
[Anonymous], 2005, The Guardian
[2]  
Bhalla S, 2022, ADV EXP MED BIOL, V1361, P249, DOI 10.1007/978-3-030-91836-1_14
[3]   Survival Impact and Cost-Effectiveness of a Multidisciplinary Tumor Board for Breast Cancer in Mozambique, Sub-Saharan Africa [J].
Brandao, Mariana ;
Guisseve, Assucena ;
Bata, Genoveva ;
Firmino-Machado, Joao ;
Alberto, Matos ;
Ferro, Josefo ;
Garcia, Carlos ;
Zaqueu, Clesio ;
Jamisse, Astrilde ;
Lorenzoni, Cesaltina ;
Piccart-Gebhart, Martine ;
Leitao, Dina ;
Come, Jotamo ;
Soares, Otilia ;
Gudo-Morais, Alberto ;
Schmitt, Fernando ;
Tulsidas, Satish ;
Carrilho, Carla ;
Lunet, Nuno .
ONCOLOGIST, 2021, 26 (06) :E996-E1008
[4]   Breast Cancer Risk Genes - Association Analysis in More than 113,000 Women [J].
Dorling, Leila ;
Carvalho, Sara ;
Allen, Jamie ;
Gonzalez-Neira, Anna ;
Luccarini, Craig ;
Wahlstrom, Cecilia ;
Pooley, Karen A. ;
Parsons, Michael T. ;
Fortuno, Cristina ;
Wang, Qin ;
Bolla, Manjeet K. ;
Dennis, Joe ;
Keeman, Renske ;
Alonso, M. Rosario ;
Alvarez, Nuria ;
Herraez, Belen ;
Fernandez, Victoria ;
Nunez-Torres, Rocio ;
Osorio, Ana ;
Valcich, Jeanette ;
Li, Minerva ;
Torngren, Therese ;
Harrington, Patricia A. ;
Baynes, Caroline ;
Conroy, Don M. ;
Decker, Brennan ;
Fachal, Laura ;
Mavaddat, Nasim ;
Ahearn, Thomas ;
Aittomaki, Kristiina ;
Antonenkova, Natalia N. ;
Arnold, Norbert ;
Arveux, Patrick ;
Ausems, Margreet G. E. M. ;
Auvinen, Paivi ;
Becher, Heiko ;
Beckmann, Matthias W. ;
Behrens, Sabine ;
Bermisheva, Marina ;
Bialkowska, Katarzyna ;
Blomqvist, Carl ;
Bogdanova, Natalia V. ;
Bogdanova-Markov, Nadja ;
Bojesen, Stig E. ;
Bonanni, Bernardo ;
Borresen-Dale, Anne-Lise ;
Brauch, Hiltrud ;
Bremer, Michael ;
Briceno, Ignacio ;
Bruning, Thomas .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (05) :428-439
[5]  
Gao C. A., 2022, COMPARING SCI ABSTRA, DOI [DOI 10.1101/2022.12.23.521610, DOI 10.1038/S41746-023-00819-6]
[6]   Introducing AI to the molecular tumor board: one direction toward the establishment of precision medicine using large-scale cancer clinical and biological information [J].
Hamamoto, Ryuji ;
Koyama, Takafumi ;
Kouno, Nobuji ;
Yasuda, Tomohiro ;
Yui, Shuntaro ;
Sudo, Kazuki ;
Hirata, Makoto ;
Sunami, Kuniko ;
Kubo, Takashi ;
Takasawa, Ken ;
Takahashi, Satoshi ;
Machino, Hidenori ;
Kobayashi, Kazuma ;
Asada, Ken ;
Komatsu, Masaaki ;
Kaneko, Syuzo ;
Yatabe, Yasushi ;
Yamamoto, Noboru .
EXPERIMENTAL HEMATOLOGY & ONCOLOGY, 2022, 11 (01)
[7]   Artificial intelligence-based multi-omics analysis fuels cancer precision medicine [J].
He, Xiujing ;
Liu, Xiaowei ;
Zuo, Fengli ;
Shi, Hubing ;
Jing, Jing .
SEMINARS IN CANCER BIOLOGY, 2023, 88 :187-200
[8]  
help.openai, CHATGPT GEN FAQ OPEN
[9]   Artificial intelligence in radiation oncology [J].
Huynh, Elizabeth ;
Hosny, Ahmed ;
Guthier, Christian ;
Bitterman, Danielle S. ;
Petit, Steven E. ;
Haas-Kogan, Daphne A. ;
Kann, Benjamin ;
Aert, Hugo J. W. L. ;
Mak, Raymond H. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2020, 17 (12) :771-781
[10]   KOHBRA BRCA risk calculator (KOHCal): a model for predicting BRCA1 and BRCA2 mutations in Korean breast cancer patients [J].
Kang, Eunyoung ;
Park, Sue K. ;
Lee, Jong Won ;
Kim, Zisun ;
Noh, Woo-Chul ;
Jung, Yongsik ;
Yang, Jung-Hyun ;
Jung, Sung Hoo ;
Kim, Sung-Won .
JOURNAL OF HUMAN GENETICS, 2016, 61 (05) :365-371