Sparse representation learning for fault feature extraction and diagnosis of rotating machinery

被引:23
作者
Ma, Sai [1 ,2 ,3 ,5 ]
Han, Qinkai [4 ]
Chu, Fulei [4 ]
机构
[1] Shandong Univ, Sch Mech Engn, Jinan 250061, Peoples R China
[2] Shandong Univ, Key Lab High Efficiency & Clean Mech Manufacture, Minist Educ, Jinan 250061, Peoples R China
[3] Shandong Univ, Natl Demonstrat Ctr Expt Mech Engn Educ, Jinan 250061, Peoples R China
[4] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
[5] Shandong Univ, Qilu Hosp, Shandong Key Lab Brain Funct Remodeling, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
Weak fault feature extraction; Fault diagnosis; Sparse representation learning; Nonlocal GMC penalty; Generalized FTV; pattern recognition algorithms; GENERALIZED VARIATION MODEL; IMAGE; REGULARIZATION; NONCONVEX; RECONSTRUCTION; GEARBOX;
D O I
10.1016/j.eswa.2023.120858
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Early fault feature extraction and fault diagnosis are of great importance for predictive maintenance of rotating machinery. To accurately extract early fault features from original noisy signals, a novel joint sparse representation learning method is developed in this paper, this method is based on the proposed nonlocal generalized minimax-concave (GMC) penalty and generalized fraction-order total variation (FTV) regularization. The motivation for this research is to leverage the benefits of joint regularizations. The proposed nonlocal GMC penalty regularization tends to preserve weak fault features, promote sparsity and avoid underestimating the amplitude of periodic fault impulses. Simultaneously, the proposed generalized FTV regularization tends to remove fault irrelevant noise and reduce staircase artifacts. Therefore, the proposed model can effectively extract early fault features from original noisy signals. The performance of the proposed model is verified by a series of experiments. In two fault diagnosis tasks, the peak signal-to-noise ratio (PSNR) of the proposed method reaches - 5 dB and - 8 dB, respectively. Compared with state-of-the-art methods, the PSNR has been improved by at least 2 dB, comparison results show that the proposed model has superior performance for early fault feature extraction.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Enhanced Sparse Low-Rank Representation via Nonconvex Regularization for Rotating Machinery Early Fault Feature Extraction
    Wang, Li
    Ma, Sai
    Han, Qinkai
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (05) : 3570 - 3578
  • [2] Sparse Representation Classification With Structured Dictionary Design Strategy for Rotating Machinery Fault Diagnosis
    Kong, Yun
    Wang, Tianyang
    Qin, Zhaoye
    Chu, Fulei
    IEEE ACCESS, 2021, 9 : 10012 - 10024
  • [3] Deep discriminative sparse representation learning for machinery fault diagnosis
    Yao, Renhe
    Jiang, Hongkai
    Jiang, Wenxin
    Liu, Yunpeng
    Dong, Yutong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [4] Sparse-Representation-Network-Based Feature Learning of Vibration Signal for Machinery Fault Diagnosis
    Miao, Mengqi
    Yu, Jianbo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (05) : 6706 - 6716
  • [5] Adaptive feature extraction using sparse coding for machinery fault diagnosis
    Liu, Haining
    Liu, Chengliang
    Huang, Yixiang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2011, 25 (02) : 558 - 574
  • [6] Feature Extraction Based on DWT and CNN for Rotating Machinery Fault Diagnosis
    Xie, Yuan
    Zhang, Tao
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 3861 - 3866
  • [7] Intelligent fault diagnosis of rotating machinery based on impact feature extraction
    Hu A.
    Sun J.
    Xing L.
    Xiang L.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38 (12): : 2973 - 2981
  • [8] Evaluation of Hand-Crafted Feature Extraction for Fault Diagnosis in Rotating Machinery: A Survey
    Sanchez, Rene-Vinicio
    Macancela, Jean Carlo
    Ortega, Luis-Renato
    Cabrera, Diego
    Marquez, Fausto Pedro Garcia
    Cerrada, Mariela
    SENSORS, 2024, 24 (16)
  • [9] Unified discriminant manifold learning for rotating machinery fault diagnosis
    Yang, Changyuan
    Ma, Sai
    Han, Qinkai
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (08) : 3483 - 3494
  • [10] Feature Extraction Method for Fault Diagnosis of Rotating Machinery Based on Wavelet and LLE
    Zhang, Guangtao
    Cheng, Yuanchu
    Wang, Xingfang
    Lu, Na
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON ELECTRONIC, MECHANICAL, INFORMATION AND MANAGEMENT SOCIETY (EMIM), 2016, 40 : 1181 - 1185