Existence of constant mean curvature 2-Spheres in Riemannian 3-spheres

被引:2
|
作者
Cheng, Da Rong [1 ,3 ]
Zhou, Xin [2 ]
机构
[1] Univ Waterloo, Waterloo, ON, Canada
[2] Cornell Univ, Ithaca, NY USA
[3] Univ Miami, Miami, FL USA
关键词
MIN-MAX THEORY; BIHARMONIC MAPS; MINIMAL HYPERSURFACES; HARMONIC MAPS; GENUS BOUNDS; SURFACES; REGULARITY; MANIFOLDS; SPHERES; MULTIPLICITY;
D O I
10.1002/cpa.22114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of branched immersed constant mean curvature (CMC) 2-spheres in an arbitrary Riemannian 3-sphere for almost every prescribed mean curvature, and moreover for all prescribed mean curvatures when the 3-sphere is positively curved. To achieve this, we develop a min-max scheme for a weighted Dirichlet energy functional. There are three main ingredients in our approach: a bi-harmonic approximation procedure to obtain compactness of the new functional, a derivative estimate of the min-max values to gain energy upper bounds for min-max sequences for almost every choice of mean curvature, and a Morse index estimate to obtain another uniform energy bound required to reach the remaining constant mean curvatures in the presence of positive curvature.
引用
收藏
页码:3374 / 3436
页数:63
相关论文
共 50 条
  • [1] MINIMAL 2-SPHERES IN 3-SPHERES
    Haslhofer, Robert
    Ketover, Daniel
    DUKE MATHEMATICAL JOURNAL, 2019, 168 (10) : 1929 - 1975
  • [2] Existence of Generalized Totally Umbilic 2-Spheres in Perturbed 3-Spheres
    Carlotto, Alessandro
    Mondino, Andrea
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (21) : 6020 - 6052
  • [3] Constant mean curvature spheres in Riemannian manifolds
    F. Pacard
    X. Xu
    manuscripta mathematica, 2009, 128 : 275 - 295
  • [4] Constant mean curvature spheres in Riemannian manifolds
    Pacard, F.
    Xu, X.
    MANUSCRIPTA MATHEMATICA, 2009, 128 (03) : 275 - 295
  • [5] AFFINE 3-SPHERES WITH CONSTANT AFFINE CURVATURE
    MAGID, MA
    RYAN, PJ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 330 (02) : 887 - 901
  • [6] On the curvature of minimal 2-spheres in spheres
    Kunio Sakamoto
    Mathematische Zeitschrift, 1998, 228 : 605 - 627
  • [7] On the curvature of minimal 2-spheres in spheres
    Sakamoto, K
    MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (04) : 605 - 627
  • [8] Constant curvature 2-spheres in CP2
    Gorodski, C
    BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA, 1999, 30 (03): : 287 - 291
  • [9] Constant curvature 2-spheres in—P2
    Claudio Gorodski
    Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 1999, 30 : 287 - 291
  • [10] MINIMAL 2-SPHERES WITH CONSTANT CURVATURE IN PN(C)
    BANDO, S
    OHNITA, Y
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1987, 39 (03) : 477 - 487