Tailoring renal-clearable zwitterionic cyclodextrin for colorectal cancer-selective drug delivery

被引:30
作者
Baek, Min-Jun [1 ,2 ]
Nguyen, Duy-Thuc [1 ,2 ]
Kim, Dahan [1 ,2 ]
Yoo, So-Yeol [3 ]
Lee, Sang Min [3 ]
Lee, Jae-Young [3 ]
Kim, Dae-Duk [1 ,2 ]
机构
[1] Seoul Natl Univ, Coll Pharm, Seoul, South Korea
[2] Seoul Natl Univ, Res Inst Pharmaceut Sci, Seoul, South Korea
[3] Chungnam Natl Univ, Coll Pharm, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
LUMINESCENT GOLD NANOPARTICLES; NEAR-INFRARED FLUOROPHORES; BETA-CYCLODEXTRIN; IN-VITRO; POLYMERIC MICELLES; INCLUSION COMPLEX; COLON-CANCER; TUMOR; DOXORUBICIN; NANOMEDICINE;
D O I
10.1038/s41565-023-01381-8
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Although cyclodextrin-based renal-clearable nanocarriers have a high potential for clinical translation in targeted cancer therapy, their designs remain to be optimized for tumour retention. Here we report on the design of a tailored structure for renal-clearable zwitterionic cyclodextrin for colorectal cancer-selective drug delivery. Twenty cyclodextrin derivatives with different charged moieties and spacers are synthesized and screened for colloidal stability. The resulting five candidates are evaluated for biodistribution and an optimized structure is identified. The optimized cyclodextrin shows a high tumour accumulation and is used for delivery of doxorubicin and ulixertinib. Higher tumour accumulation and tumour penetration facilitates tumour elimination. The improved antitumour efficacy is demonstrated in heterotopic and orthotopic colorectal cancer models. Optimizing the retention of drug delivery nanocarriers for improved cancer therapy has the potential to improve clinical outcomes. Here the authors screen 20 renal-clearable zwitterionic cyclodextrin-based nanocarriers for optimized biodistribution and tumour retention, demonstrating application in colorectal cancer models.
引用
收藏
页码:945 / +
页数:21
相关论文
共 82 条
  • [1] An introduction to zwitterionic polymer behavior and applications in solution and at surfaces
    Blackman, Lewis D.
    Gunatillake, Pathiraja A.
    Cass, Peter
    Locock, Katherine E. S.
    [J]. CHEMICAL SOCIETY REVIEWS, 2019, 48 (03) : 757 - 770
  • [2] Principles of nanoparticle design for overcoming biological barriers to drug delivery
    Blanco, Elvin
    Shen, Haifa
    Ferrari, Mauro
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (09) : 941 - 951
  • [3] Braun Michael S, 2011, Ther Adv Med Oncol, V3, P43, DOI 10.1177/1758834010388342
  • [4] Fluorescent Silica Nanoparticles with Efficient Urinary Excretion for Nanomedicine
    Burns, Andrew A.
    Vider, Jelena
    Ow, Hooisweng
    Herz, Erik
    Penate-Medina, Oula
    Baumgart, Martin
    Larson, Steven M.
    Wiesner, Ulrich
    Bradbury, Michelle
    [J]. NANO LETTERS, 2009, 9 (01) : 442 - 448
  • [5] Cabral H, 2011, NAT NANOTECHNOL, V6, P815, DOI [10.1038/NNANO.2011.166, 10.1038/nnano.2011.166]
  • [6] Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: A comparison of whole monoclonal antibody, Fab' fragments and single chain Fv
    Cheng, Wilson W. K.
    Allen, Theresa M.
    [J]. JOURNAL OF CONTROLLED RELEASE, 2008, 126 (01) : 50 - 58
  • [7] Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach
    Cheng, Yi-Hsien
    He, Chunla
    Riviere, Jim E.
    Monteiro-Riviere, Nancy A.
    Lin, Zhoumeng
    [J]. ACS NANO, 2020, 14 (03) : 3075 - 3095
  • [8] Renal clearance of quantum dots
    Choi, Hak Soo
    Liu, Wenhao
    Misra, Preeti
    Tanaka, Eiichi
    Zimmer, John P.
    Ipe, Binil Itty
    Bawendi, Moungi G.
    Frangioni, John V.
    [J]. NATURE BIOTECHNOLOGY, 2007, 25 (10) : 1165 - 1170
  • [9] Targeted zwitterionic near-infrared fluorophores for improved optical imaging
    Choi, Hak Soo
    Gibbs, Summer L.
    Lee, Jeong Heon
    Kim, Soon Hee
    Ashitate, Yoshitomo
    Liu, Fangbing
    Hyun, Hoon
    Park, GwangLi
    Xie, Yang
    Bae, Soochan
    Henary, Maged
    Frangioni, John V.
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (02) : 148 - 153
  • [10] Choi HS, 2010, NAT NANOTECHNOL, V5, P42, DOI [10.1038/nnano.2009.314, 10.1038/NNANO.2009.314]