Breast cancer: A hybrid method for feature selection and classification in digital mammography

被引:5
作者
Thawkar, Shankar [1 ]
Katta, Vijay [2 ]
Parashar, Ajay Raj [1 ]
Singh, Law Kumar [3 ]
Khanna, Munish [2 ]
机构
[1] Hindustan Coll Sci & Technol, Dept Informat Technol, Mathura, Uttar Pradesh, India
[2] Hindustan Coll Sci & Technol, Dept Comp Sci & Engn, Mathura, Uttar Pradesh, India
[3] G L A Univ, Dept Comp Engn & Applicat, Mathura, Uttar Pradesh, India
关键词
adaptive neuro-fuzzy inference system; artificial neural network; breast cancer; classification; feature selection; mammography; WHALE OPTIMIZATION ALGORITHM; DRAGONFLY ALGORITHM; MASSES; DATABASE; NETWORK;
D O I
10.1002/ima.22889
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, a hybrid approach based on the Whale optimization algorithm (WOA) and the Dragonfly algorithm (DA) is proposed for breast cancer diagnosis. The hybrid WOADA method selects features based on the fitness value. These features are used to predict the breast masses as benign or malignant using artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) as classifiers. The proposed solution is evaluated by using 651 mammograms. The results demonstrate that the WOADA technique outperforms the basic WOA and DA approaches. The accuracy of the suggested WOADA algorithm is 97.84%, with a Kappa value of 0.9477 and an AUC value of 0.972 +/- 0.007 for the ANN classifier. Likewise, the ANFIS classifier achieved 98.00% accuracy with a Kappa value of 0.96 and an AUC value of 0.998 +/- 0.001. In addition, the viability of the hybrid WOADA technique was evaluated on four benchmark datasets and then compared with four state-of-the-art algorithms and published approaches.
引用
收藏
页码:1696 / 1712
页数:17
相关论文
共 57 条
  • [1] Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation
    Abd El Aziz, Mohamed
    Ewees, Ahmed A.
    Hassanien, Aboul Ella
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2017, 83 : 242 - 256
  • [2] Quantum based Whale Optimization Algorithm for wrapper feature selection
    Agrawal, R. K.
    Kaur, Baljeet
    Sharma, Surbhi
    [J]. APPLIED SOFT COMPUTING, 2020, 89
  • [3] Artificial intelligence applications in medical imaging: A review of the medical physics research in Italy
    Avanzo, Michele
    Porzio, Massimiliano
    Lorenzon, Leda
    Milan, Lisa
    Sghedoni, Roberto
    Russo, Giorgio
    Massafra, Raffaella
    Fanizzi, Annarita
    Barucci, Andrea
    Ardu, Veronica
    Branchini, Marco
    Giannelli, Marco
    Gallio, Elena
    Cilla, Savino
    Tangaro, Sabina
    Lombardi, Angela
    Pirrone, Giovanni
    De Martin, Elena
    Giuliano, Alessia
    Belmonte, Gina
    Russo, Serenella
    Rampado, Osvaldo
    Mettivier, Giovanni
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 : 221 - 241
  • [4] Bellotti R, 2004, IEEE NUCL SCI CONF R, P1902
  • [5] Effect of Three Decades of Screening Mammography on Breast-Cancer Incidence
    Bleyer, Archie
    Welch, H. Gilbert
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2012, 367 (21) : 1998 - 2005
  • [6] BOWYER K, 1996, DIGITAL DATABASE SCR
  • [7] Contralateral asymmetry for breast cancer detection: A CADx approach
    Celaya-Padilla, Jose M.
    Guzman-Valdivia, Cesar H.
    Galvan-Tejada, Carlos E.
    Galvan-Tejada, Jorge I.
    Gamboa-Rosales, Hamurabi
    Garza-Veloz, Idalia
    Martinez-Fierro, Margarita L.
    Cid-Baez, Miguel A.
    Martinez-Torteya, Antonio
    Martinez-Ruiz, Francisco J.
    Luna-Garcia, Huizilopoztli
    Moreno-Baez, Arturo
    Nandal, Amita
    [J]. BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2018, 38 (01) : 115 - 125
  • [8] Automatic Detection and Classification of Mammograms Using Improved Extreme Learning Machine with Deep Learning
    Chakravarthy, Sannasi S. R.
    Rajaguru, H.
    [J]. IRBM, 2022, 43 (01) : 49 - 61
  • [9] Approaches for automated detection and classification of masses in mammograms
    Cheng, HD
    Shi, XJ
    Min, R
    Hu, LM
    Cai, XR
    Du, HN
    [J]. PATTERN RECOGNITION, 2006, 39 (04) : 646 - 668
  • [10] Mammographic mass classification according to Bi-RADS lexicon
    Chokri, Ferkous
    Farida, Merouani Hayet
    [J]. IET COMPUTER VISION, 2017, 11 (03) : 189 - 198