Assistive artificial intelligence for ultrasound image interpretation in regional anaesthesia: an external validation study

被引:42
作者
Bowness, James S. [1 ,2 ]
Burckett-St Laurent, David [3 ]
Hernandez, Nadia [4 ]
Keane, Pearse A. [5 ,6 ]
Lobo, Clara [7 ]
Margetts, Steve [8 ]
Moka, Eleni [9 ]
Pawa, Amit [10 ,11 ]
Rosenblatt, Meg [12 ]
Sleep, Nick [8 ]
Taylor, Alasdair [13 ]
Woodworth, Glenn [14 ]
Vasalauskaite, Asta [8 ]
Noble, J. Alison [15 ]
Higham, Helen [1 ,16 ]
机构
[1] Univ Oxford, Oxford Simulat Teaching & Res Ctr, Oxford, England
[2] Aneurin Bevan Univ Hlth Board, Dept Anaesthesia, Newport, Wales
[3] Royal Cornwall Hosp NHS Trust, Dept Anaesthesia, Truro, England
[4] Mem Hermann Hosp, Texas Med Ctr, Dept Anesthesiol, Houston, TX USA
[5] UCL, Inst Ophthalmol, Fac Brain Sci, London, England
[6] Moorfields Eye Hosp NHS Fdn Trust, Natl Inst Hlth & Care Res Biomed Res Ctr, London, England
[7] Cleveland Clin Abu Dhabi, Anesthesiol Inst, Abu Dhabi, U Arab Emirates
[8] Intelligent Ultrasound, Cardiff, Wales
[9] Creta Interclin Hosp, Anaesthesiol Dept, Hellen Healthcare Grp, Iraklion, Crete, Greece
[10] Guys & St Thomas Hosp NHS Trust, Dept Anaesthesia, London, England
[11] Kings Coll London, Fac Life Sci & Med, London, England
[12] Mt Sinai Morningside & West Hosp, Dept Anesthesiol Perioperat & Pain Med, New York, NY USA
[13] NHS Tayside, Dept Anaesthesia, Dundee, Scotland
[14] Oregon Hlth & Sci Univ, Dept Anesthesiol & Perioperat Med, Portland, OR USA
[15] Univ Oxford, Inst Biomed Engn, Oxford, England
[16] Oxford Univ Hosp NHS Fdn Trust, Dept Anaesthesia, Oxford, England
关键词
anatomy; artificial intelligence; machine learning; regional anaesthesia; translational AI; ultrasonography; ultrasound; AMERICAN SOCIETY; PAIN MEDICINE; NERVE;
D O I
10.1016/j.bja.2022.06.031
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Background: Ultrasonound is used to identify anatomical structures during regional anaesthesia and to guide needle insertion and injection of local anaesthetic. ScanNav Anatomy Peripheral Nerve Block (Intelligent Ultrasound, Cardiff, UK) is an artificial intelligence-based device that produces a colour overlay on real-time B-mode ultrasound to highlight anatomical structures of interest. We evaluated the accuracy of the artificial-intelligence colour overlay and its perceived influence on risk of adverse events or block failure. Methods: Ultrasound-guided regional anaesthesia experts acquired 720 videos from 40 volunteers (across nine anatomical regions) without using the device. The artificial-intelligence colour overlay was subsequently applied. Three more experts independently reviewed each video (with the original unmodified video) to assess accuracy of the colour overlay in relation to key anatomical structures (true positive/negative and false positive/negative) and the potential for highlighting to modify perceived risk of adverse events (needle trauma to nerves, arteries, pleura, and peritoneum) or block failure.Results: The artificial-intelligence models identified the structure of interest in 93.5% of cases (1519/1624), with a false-negative rate of 3.0% (48/1624) and a false-positive rate of 3.5% (57/1624). Highlighting was judged to reduce the risk of unwanted needle trauma to nerves, arteries, pleura, and peritoneum in 62.9-86.4% of cases (302/480 to 345/400), and to increase the risk in 0.0-1.7% (0/160 to 8/480). Risk of block failure was reported to be reduced in 81.3% of scans (585/720) and to be increased in 1.8% (13/720).Conclusions: Artificial intelligence-based devices can potentially aid image acquisition and interpretation in ultrasound -guided regional anaesthesia. Further studies are necessary to demonstrate their effectiveness in supporting training and clinical practice.Clinical trial registration: NCT04906018.
引用
收藏
页码:217 / 225
页数:9
相关论文
共 29 条
[11]   The Invisible Gorilla Strikes Again Sustained Inattentional Blindness in Expert Observers [J].
Drew, Trafton ;
Vo, Melissa L. -H. ;
Wolfe, Jeremy M. .
PSYCHOLOGICAL SCIENCE, 2013, 24 (09) :1848-1853
[12]   Standardizing nomenclature in regional anesthesia: an ASRA-ESRA Delphi consensus study of abdominal wall, paraspinal, and chest wall blocks [J].
El-Boghdadly, Kariem ;
Wolmarans, Morne ;
Stengel, Angela D. ;
Albrecht, Eric ;
Chin, Ki Jinn ;
Elsharkawy, Hesham ;
Kopp, Sandra ;
Mariano, Edward R. ;
Xu, Jeff L. ;
Adhikary, Sanjib ;
Altiparmak, Basak ;
Barrington, Michael J. ;
Bloc, Sebastien ;
Blanco, Rafael ;
Boretsky, Karen ;
Borglum, Jens ;
Breebaart, Margaretha ;
Burckett-St Laurent, David ;
Capdevila, Xavier ;
Carvalho, Brendan ;
Chuan, Alwin ;
Coppens, Steve ;
Costache, Ioana ;
Dam, Mette ;
Egeler, Christian ;
Fajardo, Mario ;
Gadsden, Jeff ;
Gautier, Philippe Emmanuel ;
Grant, Stuart Alan ;
Hadzic, Admir ;
Hebbard, Peter ;
Hernandez, Nadia ;
Hogg, Rosemary ;
Holtz, Margaret ;
Johnson, Rebecca L. ;
Karmakar, Manoj Kumar ;
Kessler, Paul ;
Kwofie, Kwesi ;
Lobo, Clara ;
Ludwin, Danielle ;
MacFarlane, Alan ;
McDonnell, John ;
McLeod, Graeme ;
Merjavy, Peter ;
Moran, E. M. L. ;
O'Donnell, Brian D. ;
Parras, Teresa ;
Pawa, Amit ;
Perlas, Anahi ;
Rojas Gomez, Maria Fernanda .
REGIONAL ANESTHESIA AND PAIN MEDICINE, 2021, 46 (07) :571-580
[13]   SCREENING FOR HIV - CAN WE AFFORD THE CONFUSION OF THE FALSE POSITIVE RATE [J].
GERMANSON, T .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 1989, 42 (12) :1235-1237
[14]   A real-time anatomy identification via tool based on artificial intelligence for ultrasound-guided peripheral nerve block procedures: an accuracy study [J].
Gungor, Irfan ;
Gunaydin, Berrin ;
Oktar, Suna O. ;
Buyukgebiz, Beyza M. ;
Bagcaz, Selin ;
Ozdemir, Miray Gozde ;
Inan, Gozde .
JOURNAL OF ANESTHESIA, 2021, 35 (04) :591-594
[15]   Impact of scan quality on AI assessment of hip dysplasia ultrasound [J].
Hareendranathan, Abhilash Rakkundeth ;
Chahal, Baljot ;
Ghasseminia, Siyavash ;
Zonoobi, Dornoosh ;
Jaremko, Jacob L. .
JOURNAL OF ULTRASOUND, 2022, 25 (02) :145-153
[16]   Regional anaesthesia and outcomes [J].
Hutton, M. ;
Brull, R. ;
Macfarlane, A. J. R. .
BJA EDUCATION, 2018, 18 (02) :52-56
[17]   Non-invasive diagnosis of deep vein thrombosis from ultrasound imaging with machine learning [J].
Kainz, Bernhard ;
Makropoulos, Antonios ;
Oppenheimer, Jonas ;
Deane, Christopher ;
Mischkewitz, Sven ;
Al-Noor, Fouad ;
Rawdin, Andrew C. ;
Stevenson, Matthew D. ;
Mandegaran, Ramin ;
Heinrich, Mattias P. ;
Curry, Nicola ;
Sankar, Shrinivasan ;
Ruttloff, Andreas ;
Klein-Weigel, Peter .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[18]   Artificial intelligence in breast imaging [J].
Le, E. P., V ;
Wang, Y. ;
Huang, Y. ;
Hickman, S. ;
Gilbert, F. J. .
CLINICAL RADIOLOGY, 2019, 74 (05) :357-366
[19]  
Liu XX, 2020, LANCET DIGIT HEALTH, V2, pE537, DOI [10.1016/S2589-7500(20)30218-1, 10.1136/bmj.m3164, 10.1016/S2589-7500(20)30219-3, 10.1038/s41591-020-1034-x]
[20]   A systematic review and meta-analysis of ultrasound versus electrical stimulation for peripheral nerve location and blockade [J].
Munirama, S. ;
McLeod, G. .
ANAESTHESIA, 2015, 70 (09) :1084-1091