Disjoint frequent hypercyclicity of composition operators

被引:2
|
作者
Bayart, Frederic [1 ]
机构
[1] Univ Clermont Auvergne, CNRS, UMR 6620, Lab Math Blaise Pascal, Campus Univ Cezeaux,3 Pl Vasarely, F-63178 Aubiere, France
关键词
Composition operators; Disjoint hypercyclicity;
D O I
10.1016/j.aim.2023.108945
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a sufficient condition for two operators to be disjointly frequently hypercyclic. We apply this criterion to composition operators acting on H(D) or on the Hardy space H2(D). We simplify a result on disjoint frequent hypercyclicity of pseudo shifts of a recent paper of Martin et al. and we exhibit two disjointly frequently hypercyclic weighted shifts.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:48
相关论文
共 50 条
  • [41] Upper frequent hypercyclicity and related notions
    Bonilla, Antonio
    Grosse-Erdmann, Karl-G.
    REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (03): : 673 - 711
  • [42] A probabilistic version of the Frequent Hypercyclicity Criterion
    Grivaux, Sophie
    STUDIA MATHEMATICA, 2006, 176 (03) : 279 - 290
  • [43] A quantitative interpretation of the frequent hypercyclicity criterion
    Ernst, Romuald
    Mouze, Augustin
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 898 - 924
  • [44] Continuity and hypercyclicity of composition operators on algebras of symmetric analytic functions on Banach spaces
    Iryna Chernega
    Oleh Holubchak
    Zoryana Novosad
    Andriy Zagorodnyuk
    European Journal of Mathematics, 2020, 6 : 153 - 163
  • [45] The Hypercyclicity Criterion for sequences of operators
    Bernal-González, L
    Grosse-Erdmann, KG
    STUDIA MATHEMATICA, 2003, 157 (01) : 17 - 32
  • [46] Upper frequent hypercyclicity and related notions
    Antonio Bonilla
    Karl-G. Grosse-Erdmann
    Revista Matemática Complutense, 2018, 31 : 673 - 711
  • [47] Subspace hypercyclicity for Toeplitz operators
    Martinez-Avendano, Ruben A.
    Zatarain-Vera, Oscar
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) : 772 - 775
  • [48] Hypercyclicity and supercyclicity of unbounded operators
    Abhay Kumar
    Advances in Operator Theory, 2022, 7
  • [49] Chaos and frequent hypercyclicity for weighted shifts
    Charpentier, Stephane
    Grosse-Erdmann, Karl
    Menet, Quentin
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (12) : 3634 - 3670
  • [50] Hypercyclicity and supercyclicity of unbounded operators
    Kumar, Abhay
    ADVANCES IN OPERATOR THEORY, 2022, 7 (04)