Development of an Amorphous Nickel Boride/Manganese Molybdate Heterostructure as an Efficient Electrode Material for a High-Performance Asymmetric Supercapacitor

被引:38
|
作者
Karthik, Raj [1 ]
Sukanya, Ramaraj [2 ]
Chen, Shen Ming [2 ]
Hasan, Mahmudul [1 ]
Dhakal, Ganesh [1 ]
Shafi, P. Muhammed [1 ,3 ]
Shim, Jae-Jin [1 ]
机构
[1] Yeungnam Univ, Sch Chem Engn, Gyongsan 38541, Gyeongbuk, South Korea
[2] Natl Taipei Univ Technol, Dept Chem Engn & Biotechnol, Electroanal & Bioelectrochem Lab, Taipei 106, Taiwan
[3] Natl Inst Technol Calicut, Dept Phys, Calicut 673601, Kerala, India
基金
新加坡国家研究基金会;
关键词
amorphous nickel boride; manganese molybdate; heterostructure; high energy density; asymmetric supercapacitors; SHELL NANOSHEET ARRAYS; NI FOAM; ELECTROCHEMICAL PROPERTIES; ENERGY-STORAGE; COBALT BORIDE; CARBON CLOTH; HYBRID; COMPOSITE; NANORODS; NANOPARTICLES;
D O I
10.1021/acsami.3c00013
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The exploration of heterostructure materials with unique electronic properties is considered a desirable platform for fabricating electrode/surface interface relationships for constructing asymmetric supercapacitors (ASCs) with high energy density. In this work, a heterostructure based on amorphous nickel boride (NiXB) and crystalline square bar-like manganese molybdate (MnMoO4) was prepared by a simple synthesis strategy. The formation of the NiXB/ MnMoO4 hybrid was confirmed by powder X-ray diffraction (p-XRD), field emission scanning electron microscopy (FE-SEM), field-emission transmission electron microscopy (FE-TEM), Brunauer-Emmett- Teller (BET), Raman, and X-ray photoelectron spectroscopy (XPS). In this hybrid system (NiXB/MnMoO4), the intact combination of NiXB and MnMoO4 leads to a large surface area with open porous channels and abundant crystalline/amorphous interfaces with a tunable electronic structure. This NiXB/MnMoO4 hybrid shows high specific capacitance (587.4 F g-1) at 1 A g-1, and it even retains a capacitance of 442.2 F g-1 at 10 A g-1, indicating superior electrochemical performance. The fabricated NiXB/MnMoO4 hybrid electrode also exhibited an excellent capacity retention of 124.4% (10000 cycles) and a Coulombic efficiency of 99.8% at a current density of 10 A g-1. In addition, the ASC device (NiXB/MnMoO4// activated carbon) achieved a specific capacitance of 104 F g-1 at 1 A g-1 and delivered a high energy density of 32.5 Wh.kg-1 with a power density of 750 W center dot kg-1. This exceptional electrochemical behavior is due to the ordered porous architecture and the strong synergistic effect of NiXB and MnMoO4, which enhances the accessibility and adsorption of OH- ions that improve electron transport. Moreover, the NiXB/MnMoO4//AC device exhibits excellent cyclic stability with a retention of 83.4% of the original capacitance after 10000 cycles, which is due to the heterojunction layer between NiXB and MnMoO4 that can improve the surface wettability without causing structural changes. Our results show that the metal boride/molybdate-based heterostructure is a new category of high-performance and promising material for the growth of advanced energy storage devices.
引用
收藏
页码:11927 / 11939
页数:13
相关论文
共 50 条
  • [21] Homogeneous nickel bicarbonate nanocrystals as electrode materials for high-performance asymmetric supercapacitors
    Feng, Man
    Gu, Jianmin
    Zhang, Guang Cong
    Xu, Ming
    Yu, Yanan
    Liu, Xin
    Wang, Zhuang
    Yin, Baipeng
    Liu, Yuwen
    Liu, Shimin
    JOURNAL OF SOLID STATE CHEMISTRY, 2020, 282 (282)
  • [22] Facile synthesis of nanourchin like manganese oxide electrode material for high performance symmetric supercapacitor
    Kadam, Snehal L.
    Ingole, Rahul S.
    Tiwari, Nidhi G.
    Nakate, Umesh T.
    Nakate, Yogesh T.
    Kamat, Rajanish K.
    Ok, Jong G.
    Kulkarni, Shrinivas B.
    SURFACES AND INTERFACES, 2023, 42
  • [23] Novel 2D CeO2 nanoflakes as a high-performance asymmetric supercapacitor electrode material
    Joseph, Anit
    Perikkathra, Sneha
    Thomas, Tiju
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [24] High-Performance and Stable Polyaniline@Niobium Sulfide Electrode for an Asymmetric Supercapacitor
    Afzal, Amir Muhammad
    Iqbal, Ahmad
    Iqbal, Muhammad Waqas
    Wabaidur, Saikh Mohammad
    Al-Ammar, Essam A.
    Mumtaz, Sohail
    Ha Choi, Eun
    Abdul Munnaf, Shaik
    CHEMICAL ENGINEERING & TECHNOLOGY, 2024, 47 (03) : 485 - 493
  • [25] Preparation of layered NiCo-MOF nanosheets for high-performance asymmetric supercapacitor electrode material
    Pan, Qunruo
    Yang, Min
    Song, Fangxiang
    Xiong, Zhongtao
    He, Xianping
    VACUUM, 2024, 225
  • [26] Design of nickel cobalt molybdate regulated by boronizing for high-performance supercapacitor applications
    Zhao, Gang
    Chen, Yumeng
    Sun, Pengxiao
    Hao, Shuhua
    Wang, Xiaoke
    Qu, Guangmeng
    Xing, Yupeng
    Xu, Xijin
    NANOSCALE, 2020, 12 (34) : 17849 - 17857
  • [27] Ni-MOF derived NiO/Ni/r-GO nanocomposite as a novel electrode material for high-performance asymmetric supercapacitor
    Gowdhaman, A.
    Kumar, S. Arun
    Elumalai, D.
    Balaji, C.
    Sabarinathan, M.
    Ramesh, R.
    Navaneethan, M.
    JOURNAL OF ENERGY STORAGE, 2023, 61
  • [28] A high-performance asymmetric supercapacitor based on a directly grown nickel bicarbonate/nickel foam composite
    Long, Lu
    Fu, Weidong
    Yan, Minglei
    Yao, Yadong
    Wang, Hongjing
    Wang, Meng
    Liao, Xiaoming
    Yin, Guangfu
    Huang, Zhongbing
    ELECTROCHIMICA ACTA, 2015, 180 : 330 - 338
  • [29] Binary nanocomposite of polyindole intercalated with nickel cobaltite as high-performance supercapacitor electrode
    Ayman, Sara
    Sakr, Abdel-Hamid
    Ebrahim, Shaker
    Soliman, Moataz
    Elshaer, A. M.
    Elkony, Yasmeen
    MATERIALS CHEMISTRY AND PHYSICS, 2025, 332
  • [30] Synthesis of nickel-cobalt sulfide electrode materials for high-performance asymmetric supercapacitors
    Zhang, Yang
    Chen, Yanli
    Liang, Ke
    Zhang, Yanrong
    Wang, Dan
    Wang, Wenchang
    Wang, Jie
    Mitsuzaki, Naotoshi
    Chen, Zhidong
    JOURNAL OF ENERGY STORAGE, 2025, 109