Development of an Amorphous Nickel Boride/Manganese Molybdate Heterostructure as an Efficient Electrode Material for a High-Performance Asymmetric Supercapacitor

被引:43
作者
Karthik, Raj [1 ]
Sukanya, Ramaraj [2 ]
Chen, Shen Ming [2 ]
Hasan, Mahmudul [1 ]
Dhakal, Ganesh [1 ]
Shafi, P. Muhammed [1 ,3 ]
Shim, Jae-Jin [1 ]
机构
[1] Yeungnam Univ, Sch Chem Engn, Gyongsan 38541, Gyeongbuk, South Korea
[2] Natl Taipei Univ Technol, Dept Chem Engn & Biotechnol, Electroanal & Bioelectrochem Lab, Taipei 106, Taiwan
[3] Natl Inst Technol Calicut, Dept Phys, Calicut 673601, Kerala, India
基金
新加坡国家研究基金会;
关键词
amorphous nickel boride; manganese molybdate; heterostructure; high energy density; asymmetric supercapacitors; SHELL NANOSHEET ARRAYS; NI FOAM; ELECTROCHEMICAL PROPERTIES; ENERGY-STORAGE; COBALT BORIDE; CARBON CLOTH; HYBRID; COMPOSITE; NANORODS; NANOPARTICLES;
D O I
10.1021/acsami.3c00013
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The exploration of heterostructure materials with unique electronic properties is considered a desirable platform for fabricating electrode/surface interface relationships for constructing asymmetric supercapacitors (ASCs) with high energy density. In this work, a heterostructure based on amorphous nickel boride (NiXB) and crystalline square bar-like manganese molybdate (MnMoO4) was prepared by a simple synthesis strategy. The formation of the NiXB/ MnMoO4 hybrid was confirmed by powder X-ray diffraction (p-XRD), field emission scanning electron microscopy (FE-SEM), field-emission transmission electron microscopy (FE-TEM), Brunauer-Emmett- Teller (BET), Raman, and X-ray photoelectron spectroscopy (XPS). In this hybrid system (NiXB/MnMoO4), the intact combination of NiXB and MnMoO4 leads to a large surface area with open porous channels and abundant crystalline/amorphous interfaces with a tunable electronic structure. This NiXB/MnMoO4 hybrid shows high specific capacitance (587.4 F g-1) at 1 A g-1, and it even retains a capacitance of 442.2 F g-1 at 10 A g-1, indicating superior electrochemical performance. The fabricated NiXB/MnMoO4 hybrid electrode also exhibited an excellent capacity retention of 124.4% (10000 cycles) and a Coulombic efficiency of 99.8% at a current density of 10 A g-1. In addition, the ASC device (NiXB/MnMoO4// activated carbon) achieved a specific capacitance of 104 F g-1 at 1 A g-1 and delivered a high energy density of 32.5 Wh.kg-1 with a power density of 750 W center dot kg-1. This exceptional electrochemical behavior is due to the ordered porous architecture and the strong synergistic effect of NiXB and MnMoO4, which enhances the accessibility and adsorption of OH- ions that improve electron transport. Moreover, the NiXB/MnMoO4//AC device exhibits excellent cyclic stability with a retention of 83.4% of the original capacitance after 10000 cycles, which is due to the heterojunction layer between NiXB and MnMoO4 that can improve the surface wettability without causing structural changes. Our results show that the metal boride/molybdate-based heterostructure is a new category of high-performance and promising material for the growth of advanced energy storage devices.
引用
收藏
页码:11927 / 11939
页数:13
相关论文
共 52 条
[1]   Quaternary transition metal molybdate (Mn0.25Ni0.25Co0.25Fe0.25 MoO4) design to improve the kinetics of the redox reaction in supercapacitors [J].
Appiagyei, Alfred Bekoe ;
Han, Jeong In .
CERAMICS INTERNATIONAL, 2020, 46 (08) :12422-12429
[2]   Strongly coupled nickel boride/graphene hybrid as a novel electrode material for supercapacitors [J].
Cao, Xueying ;
Wang, Xiaoxia ;
Cui, Liang ;
Jiang, Degang ;
Zheng, Yiwei ;
Liu, Jingquan .
CHEMICAL ENGINEERING JOURNAL, 2017, 327 :1085-1092
[3]   MnMoO4•4H2O nanoplates grown on a Ni foam substrate for excellent electrochemical properties [J].
Cao, Yunjiu ;
Li, Wenyao ;
Xu, Kaibing ;
Zhang, Yuxin ;
Ji, Tao ;
Zou, Rujia ;
Yang, Jianmao ;
Qin, Zongyi ;
Hu, Junqing .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (48) :20723-20728
[4]   Hierarchical NiCo2S4 Nanotube@NiCo2S4 Nanosheet Arrays on Ni Foam for High-Performance Supercapacitors [J].
Chen, Haichao ;
Chen, Si ;
Shao, Hongyan ;
Li, Chao ;
Fan, Meiqiang ;
Chen, Da ;
Tian, Guanglei ;
Shu, Kangying .
CHEMISTRY-AN ASIAN JOURNAL, 2016, 11 (02) :248-255
[5]   Tuning the electrochemical behavior of Co x Mn3-x sulfides by varying different Co/Mn ratios in supercapacitor [J].
Chen, Si ;
Chen, Haichao ;
Li, Chao ;
Fan, Meiqiang ;
Lv, Chunju ;
Tian, Guanglei ;
Shu, Kangying .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (11) :6687-6696
[6]   Interfacial Engineering of Nickel Boride/Metaborate and Its Effect on High Energy Density Asymmetric Supercapacitors [J].
Chen, Yuanzhen ;
Zhou, Tengfei ;
Li, Lei ;
Pang, Wei Kong ;
He, Xingmin ;
Liu, Yong-Ning ;
Guo, Zaiping .
ACS NANO, 2019, 13 (08) :9376-9385
[7]   α MnMoO4/graphene hybrid composite: high energy density supercapacitor electrode material [J].
Ghosh, Debasis ;
Giri, Soumen ;
Moniruzzaman, Md ;
Basu, Tanya ;
Mandal, Manas ;
Das, Chapal Kumar .
DALTON TRANSACTIONS, 2014, 43 (28) :11067-11076
[8]   Wearable superhigh energy density supercapacitors using a hierarchical ternary metal selenide composite of CoNiSe2 microspheres decorated with CoFe2Se4 nanorods [J].
Gopi, Chandu V. V. Muralee ;
Reddy, Araveeti Eswar ;
Kim, Hee-Je .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) :7439-7448
[9]   NiCo2O4@MnMoO4 core-shell flowers for high performance supercapacitors [J].
Gu, Zhengxiang ;
Zhang, Xiaojun .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (21) :8249-8254
[10]   High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors [J].
Guo, Di ;
Luo, Yazi ;
Yu, Xinzhi ;
Li, Qiuhong ;
Wang, Taihong .
NANO ENERGY, 2014, 8 :174-182