The Schwarz lemma in bicomplex analysis

被引:3
作者
Li, Zekun [1 ]
Dai, Binlin [1 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Math, Shanghai, Peoples R China
关键词
bicomplex numbers; Mobius transformation; Schwarz lemma;
D O I
10.1002/mma.9058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate Schwarz lemma in the framework of bicomplex numbers, which are pairs of complex numbers making up a commutative ring with zero-divisors. The bicomplex is a generalization of complex which has close relations with Fractal geometry, Minkowski Space-Time, Maxwell's equations, Schrodinger equation, and Gaussian pulse wave. In this paper, we first construct a type of bicomplex Mobius transformation and obtain some results: the mapping properties on bicomplex sphere and bicomplex ball, preserving the inverse points with respect to the bicomplex sphere B(0,1). Then we obtain the Poisson integral formula in bicomplex setting, and by using the Poisson integral formula, we give the Schwarz lemma for bicomplex holomorphic functions in bicomplex setting. Finally, we shall give the Schwarz lemma and the Schwarz-Pick type lemma for holomorphic functions in bicomplex analysis. These results may give new energy for the development of quantum mechanics.
引用
收藏
页码:9351 / 9361
页数:11
相关论文
共 34 条
[1]  
Agarwal R, 2021, J NONLINEAR SCI APP, V15, P48, DOI [10.22436/jnsa.015.01.04, 10.22436/jnsa.015.01.04, DOI 10.22436/JNSA.015.01.04]
[2]  
Agarwal R, 2017, ROM J PHYS, V62
[3]  
Alpay D, 2014, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-3-319-05110-9
[4]   Effective degrees of freedom of a random walk on a fractal [J].
Balankin, Alexander S. .
PHYSICAL REVIEW E, 2015, 92 (06)
[5]   Physics in space-time with scale-dependent metrics [J].
Balankin, Alexander S. .
PHYSICS LETTERS A, 2013, 377 (25-27) :1606-1610
[6]  
Balankin AS., 2016, FRACTALS, V24
[7]   Bicomplex Modules with Indefinite Inner Product [J].
Banerjee, A. ;
Deb, R. .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (03)
[8]  
Banerjee A, 2014, Arxiv, DOI [arXiv:1403.3313, 10.48550/arXiv.1403.3313.819, DOI 10.48550/ARXIV.1403.3313.819]
[9]  
Banerjee A, 2015, Arxiv, DOI [arXiv:1404.4236, 10.48550/arXiv.1404.4236.819, DOI 10.48550/ARXIV.1404.4236.819]
[10]   Bicomplex Harmonic and Isotonic Oscillators: The Excited States [J].
Banerjee, Abhijit .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (03) :2321-2332