Entanglement and the Path Integral

被引:1
作者
Wharton, Ken [1 ]
Liu, Raylor [1 ]
机构
[1] San Jose State Univ, Dept Phys & Astron, One Washington Sq, San Jose, CA 95192 USA
关键词
Quantum entanglement; Sum over histories; Entanglement swapping; Triangle network; Future input dependence; DELAYED-CHOICE;
D O I
10.1007/s10701-022-00664-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The path integral is not typically utilized for analyzing entanglement experiments, in part because there is no standard toolbox for converting an arbitrary experiment into a form allowing a simple sum-over-history calculation. After completing the last portion of this toolbox (a technique for implementing multi-particle measurements in an entangled basis), some interesting 4- and 6-particle experiments are analyzed with this alternate technique. While the joint probabilities of measurement outcomes are always equivalent to conventional quantum mechanics, differences in the calculations motivate a number of foundational insights, concerning nonlocality, retrocausality, and the objectivity of entanglement itself.
引用
收藏
页数:23
相关论文
共 28 条
  • [1] Adlam E, 2022, Arxiv, DOI arXiv:2201.12934
  • [2] Laws of Nature as Constraints
    Adlam, Emily
    [J]. FOUNDATIONS OF PHYSICS, 2022, 52 (01)
  • [3] Contextuality, Fine-Tuning and Teleological Explanation
    Adlam, Emily
    [J]. FOUNDATIONS OF PHYSICS, 2021, 51 (06)
  • [4] Almada D., 2016, INT J QUANTUM FOUND, V2, P1
  • [5] Chen E.K., 2022, RETHINKING LAWS NATU
  • [6] Delayed-Choice Experiments and the Metaphysics of Entanglement
    Egg, Matthias
    [J]. FOUNDATIONS OF PHYSICS, 2013, 43 (09) : 1124 - 1135
  • [7] Feynman R.P., 2006, QED STRANGE THEORY L, V33
  • [8] Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres
    Hensen, B.
    Bernien, H.
    Dreau, A. E.
    Reiserer, A.
    Kalb, N.
    Blok, M. S.
    Ruitenberg, J.
    Vermeulen, R. F. L.
    Schouten, R. N.
    Abellan, C.
    Amaya, W.
    Pruneri, V.
    Mitchell, M. W.
    Markham, M.
    Twitchen, D. J.
    Elkouss, D.
    Wehner, S.
    Taminiau, T. H.
    Hanson, R.
    [J]. NATURE, 2015, 526 (7575) : 682 - 686
  • [9] Quantum entanglement in the triangle network
    Kraft, Tristan
    Designolle, Sebastien
    Ritz, Christina
    Brunner, Nicolas
    Guehne, Otfried
    Huber, Marcus
    [J]. PHYSICAL REVIEW A, 2021, 103 (06)
  • [10] Ma XS, 2012, NAT PHYS, V8, P479, DOI [10.1038/nphys2294, 10.1038/NPHYS2294]