A non-singular version of the Oseledec ergodic theorem

被引:1
|
作者
Dooley, Anthony H. [1 ]
Jin, Jie [1 ]
机构
[1] Univ Technol Sydney, Sch Math & Phys Sci, Ultimo, NSW 2007, Australia
关键词
non-singular ergodic theory; random ergodic theorem; critical dimension; PROOF;
D O I
10.1017/etds.2021.174
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Kingman's subadditive ergodic theorem is traditionally proved in the setting of a measure-preserving invertible transformation T of a measure space (X, mu). We use a theorem of Silva and Thieullen to extend the theorem to the setting of a not necessarily invertible transformation, which is non-singular under the assumption that mu and mu omicron T have the same null sets. Using this, we are able to produce versions of the Furstenberg-Kesten theorem and the Oseledec ergodic theorem for products of random matrices without the assumption that the transformation is either invertible or measure-preserving.
引用
收藏
页码:873 / 886
页数:14
相关论文
共 50 条
  • [21] On non-singular multilinear maps
    Sun, Xiaosong
    Du, Xiankun
    Liu, Dayan
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (03): : 297 - 303
  • [22] THE EIGENVALUES OF NON-SINGULAR TRANSFORMATIONS
    AARONSON, J
    ISRAEL JOURNAL OF MATHEMATICS, 1983, 45 (04) : 297 - 312
  • [23] Anisotropy in a non-singular bounce
    Cai, Yi-Fu
    Brandenberger, Robert
    Peter, Patrick
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (07)
  • [24] An invariant for non-singular isomorphism
    Mortiss, G
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 885 - 893
  • [25] CATEGORY OF NON-SINGULAR MODULES
    LECLERC, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (07): : 369 - &
  • [26] NON-SINGULAR UNIVERSE WITH TORSION
    KOPCZYNS.W
    PHYSICS LETTERS A, 1972, A 39 (03) : 219 - &
  • [27] Non-singular magnetic monopoles
    Khademi, S.
    Shahsavari, M.
    Saeed, A. M.
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2007, 8 (03): : 201 - 206
  • [28] Non-singular acyclic matrices
    Kim, In-Jae
    Shader, Bryan L.
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (04): : 399 - 407
  • [30] AN IMPROVED VERSION OF AN ERGODIC THEOREM IN QUANTUM MECHANICS
    PROSPERI, GM
    SCOTTI, A
    NUOVO CIMENTO, 1960, 17 (02): : 267 - 268