Protein-only Nanoparticles for T Cell Expansion and Activation

被引:3
作者
Fornt-Sune, Marc [1 ,2 ]
Bermejo, Gonzalo Lazaro [1 ,3 ]
Gil-Garcia, Marcos [1 ,2 ]
Aran, Andrea [1 ,3 ]
Garcia-Pardo, Javier [1 ,2 ]
Marti, Merce [1 ,3 ]
Ventura, Salvador [1 ,2 ]
机构
[1] Univ Autonoma Barcelona, Inst Biotecnol & Biomed IBB, Barcelona 08193, Spain
[2] Univ Autonoma Barcelona, Dept Bioquim & Biol Mol, Barcelona 08193, Spain
[3] Univ Autonoma Barcelona, Dept Biol Cellular Fisiol & Immunol, E-08193 Barcelona, Spain
关键词
protein nanoparticles; self-assembly; coiledcoil; Z-domain; antibody; T cell activation; T cell proliferation;
D O I
10.1021/acsanm.4c00698
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The in vitro expansion and activation of T cells utilizing synthetic nanosized artificial antigen presenting cells (aAPCs) have emerged as a promising technique for cancer treatment. Although diverse nanomaterials have been explored as aAPC scaffolds, protein-only nanoparticles have been largely overlooked, despite their high designability and biocompatibility. In this study, we exploit a plug-and-play approach for the development of protein-only nanoparticles as aAPCs using the self-assembling properties of ZapB coiled coil and the Z-domain antibody-capturing ability. The resulting coiled coil-based nanoparticles (ccNPs) can be easily, rapidly, and simultaneously functionalized with anti-CD3 and anti-CD28 antibodies (ccNPs-CD3/CD28). Our results demonstrate that ccNPs-CD3/CD28 induce polyclonal T cell proliferation and activation while sustaining cytokine production for an extended period. The biocompatibility, modularity, and chemistry-free surface modification of this protein-only strategy render it a versatile platform for in vitro T cell expansion and activation.
引用
收藏
页码:6669 / 6680
页数:12
相关论文
共 33 条
[1]   Characterisation of the protein corona using tunable resistive pulse sensing: determining the change and distribution of a particle's surface charge [J].
Blundell, Emma L. C. J. ;
Healey, Matthew J. ;
Holton, Elizabeth ;
Sivakumaran, Muttuswamy ;
Manstana, Sarabjit ;
Platt, Mark .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2016, 408 (21) :5757-5768
[2]   Amyloid-like properties of bacterial inclusion bodies [J].
Carrió, M ;
González-Montalbán, N ;
Vera, A ;
Villaverde, A ;
Ventura, S .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 347 (05) :1025-1037
[3]   Immobilized protein ZZ, an affinity tool for immunoglobulin isolation and immunological experimentation [J].
Chen, Cheng ;
Huang, Qi-Lai ;
Jiang, Shu-Han ;
Pan, Xiao ;
Hua, Zi-Chun .
BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2006, 45 :87-92
[4]   Molecular mechanisms of T cell co-stimulation and co-inhibition [J].
Chen, Lieping ;
Flies, Dallas B. .
NATURE REVIEWS IMMUNOLOGY, 2013, 13 (04) :227-242
[5]   Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells [J].
Cheung, Alexander S. ;
Zhang, David K. Y. ;
Koshy, Sandeep T. ;
Mooney, David J. .
NATURE BIOTECHNOLOGY, 2018, 36 (02) :160-+
[6]   Amyloids in bacterial inclusion bodies [J].
de Groot, Natalia S. ;
Sabate, Raimon ;
Ventura, Salvador .
TRENDS IN BIOCHEMICAL SCIENCES, 2009, 34 (08) :408-416
[7]   Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division [J].
Ebersbach, Gitte ;
Galli, Elisa ;
Moller-Jensen, Jakob ;
Loewe, Jan ;
Gerdes, Kenn .
MOLECULAR MICROBIOLOGY, 2008, 68 (03) :720-735
[8]   Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells [J].
Eggermont, Loek J. ;
Paulis, Leonie E. ;
Tel, Jurjen ;
Figdor, Carl G. .
TRENDS IN BIOTECHNOLOGY, 2014, 32 (09) :456-465
[9]   CD28 Costimulation: From Mechanism to Therapy [J].
Esensten, Jonathan H. ;
Helou, Ynes A. ;
Chopra, Gaurav ;
Weiss, Arthur ;
Bluestone, Jeffrey A. .
IMMUNITY, 2016, 44 (05) :973-988
[10]   Coiled-Coil Based Inclusion Bodies and Their Potential Applications [J].
Gil-Garcia, Marcos ;
Ventura, Salvador .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9