Nonlinear Polytopic Systems With Predefined Time Convergence

被引:16
作者
Kumar, Sunil [1 ]
Soni, Sandeep Kumar [1 ]
Pal, Anil Kumar [1 ]
Kamal, Shyam [1 ]
Xiong, Xiaogang [2 ]
机构
[1] Indian Inst Technol BHU, Dept Elect Engn, Varanasi 221005, India
[2] Harbin Inst Technol, Sch Mech & Automat, Dept Control Sci & Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Convergence; Lyapunov methods; Uncertainty; Sufficient conditions; State feedback; Indexes; Circuit stability; Polytopic systems; predefined time convergence; finite-time convergence; fixed-time convergence; control Lyapunov function; ROBUST STABILIZATION; STABILITY;
D O I
10.1109/TCSII.2021.3125722
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief deals with predefined time control for nonlinear polytopic systems. With such a control, the settling time function is uniform with respect to initial conditions of the system and can be chosen by the designer. By using the control Lyapunov function, a sufficient condition is investigated for the existence of a continuous and predefined time stable state feedback controller. The obtained sufficient condition is also necessary, such that the closed-loop nonlinear polytopic system has a robust control Lyapunov function (RCLF) for all possible parametric uncertainties. Finally, a practical system shows the efficacy of the proposed approach.
引用
收藏
页码:632 / 636
页数:5
相关论文
共 22 条
[1]   Robust H∞ finite-time control for discrete-time polytopic uncertain switched linear systems [J].
Ban, Jaepil ;
Kwon, Wookyong ;
Won, Sangchul ;
Kim, Sangwoo .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2018, 29 :348-362
[2]  
Bhattacharyya S. P., 1995, Robust Control: The Parametric Approach
[3]   Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions [J].
Feron, E ;
Apkarian, P ;
Gahinet, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (07) :1041-1046
[4]   On the design of nonautonomous fixed-time controllers with a predefined upper bound of the settling time [J].
Gomez-Gutierrez, David .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (10) :3871-3885
[5]   L2-based static output feedback controller design for a class of polytopic systems with actuator saturation [J].
Goyal, Jitendra Kumar ;
Aggarwal, Shubham ;
Ghosh, Sandip ;
Kamal, Shyam ;
Dworak, Pawel .
INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (08) :2151-2163
[6]   Alternative proofs for improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty: A predictive approach [J].
Jia, YM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (08) :1413-1416
[7]   On optimal predefined-time stabilization [J].
Jimenez-Rodriguez, E. ;
Sanchez-Torres, J. D. ;
Loukianov, A. G. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2017, 27 (17) :3620-3642
[8]   A Lyapunov-Like Characterization of Predefined-Time Stability [J].
Jimenez-Rodriguez, Esteban ;
Munoz-Vazquez, Aldo Jonathan ;
Sanchez-Torres, Juan Diego ;
Defoort, Michael ;
Loukianov, Alexander G. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (11) :4922-4927
[9]  
Li S, 2021, IEEE T FUZZY SYST, V29, P833, DOI [10.1155/2020/4732021, 10.1109/TFUZZ.2020.2965917]
[10]   Conditions for fixed-time stability and stabilization of continuous autonomous systems [J].
Lopez-Ramirez, Francisco ;
Efimov, Denis ;
Polyakov, Andrey ;
Perruquetti, Wilfrid .
SYSTEMS & CONTROL LETTERS, 2019, 129 :26-35