Oxygen vacancy of Pt/CeO2 enabled low-temperature hydrogen generation from methanol and water

被引:15
|
作者
Guo, Qing [1 ]
Wang, You [1 ]
Li, Wenbin [1 ]
Zou, Yong [1 ]
Zhang, Sai [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Chem & Chem Engn, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
H (2) generation; Aqueous-phase reforming of methanol; Low temperatures; Oxygen vacancy; Pt; METAL-SUPPORT INTERACTION; SELECTIVE HYDROGENATION; CATALYSTS; DEHYDROGENATION; GAS; SPILLOVER; EFFICIENT; COMPLEX; H-2;
D O I
10.1016/j.jcat.2024.115309
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous-phase reforming of methanol (APRM) represents an alternative approach to achieve a sustainable hydrogen generation and safe storage. Nonetheless, the limitations imposed by the high operating temperatures of heterogeneous catalysts serve as a bottleneck for the widespread adoption of this system. Herein, we demonstrated that the Pt nanoparticles supported on porous nanorods of CeO2 with abundant oxygen vacancies (Pt/PN-CeO2) enabled the efficient H-2 generation through low-temperature (<60 degrees C) APRM reaction. The presence of oxygen vacancies on PN-CeO2 could enhance the electronic density of supported Pt nanoparticles through strong metal-support interaction, thereby promoting the activation of methanol. Meanwhile, the oxygen vacancies could further promote the H2O activation. Consequently, the interface between Pt and PN-CeO2 enabled efficient H-2 generation at 60 degrees C with a TOF values of 173.5 h(-1) and suppress CO generation. This finding provides a promising pathway towards the low-temperature APRM reaction.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Simulated Temperature Programmed Desorption of Acetaldehyde on CeO2(111): Evidence for the Role of Oxygen Vacancy and Hydrogen Transfer
    Zhao, Chuanlin
    Xu, Ye
    TOPICS IN CATALYSIS, 2017, 60 (6-7) : 446 - 458
  • [32] Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts
    Luengnaruemitchai, A
    Osuwan, S
    Gulari, E
    CATALYSIS COMMUNICATIONS, 2003, 4 (05) : 215 - 221
  • [33] Low-temperature hydrogen production from methanol over a ruthenium catalyst in water
    Awasthi, Mahendra K.
    Rai, Rohit K.
    Behrens, Silke
    Singh, Sanjay K.
    CATALYSIS SCIENCE & TECHNOLOGY, 2021, 11 (01) : 136 - 142
  • [34] A CoOx/CeO2 catalyst for low-temperature CO oxidation
    Shao Jianjun
    Zhang Ping
    Tang Xingfu
    Zhang Baocai
    Liu Junlong
    Xu Yide
    Shen Wenjie
    CHINESE JOURNAL OF CATALYSIS, 2006, 27 (11) : 937 - 939
  • [35] Transition metal and Pr co-doping induced oxygen vacancy in Pd/CeO2 catalyst boosts low-temperature CO oxidation
    Deng, Yanbo
    Fu, Lian
    Song, Wenjia
    Ouyang, Like
    Yuan, Shaojun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 311
  • [36] Effects of calcination temperature and CeO2 contents on the performance of Pt/CeO2−CNTs hybrid nanotube catalysts for methanol oxidation
    Jingjing Yang
    Yuanyuan Chu
    Long Li
    Haitao Wang
    Zhao Dai
    Xiao-Yao Tan
    Journal of Applied Electrochemistry, 2016, 46 : 369 - 377
  • [37] Engineering of oxygen vacancy defect in CeO2 through Mn doping for toluene catalytic oxidation at low temperature
    Ismail, Ahmed
    Zahid, Muhammad
    Ali, Sharafat
    Bakhtiar, Syed ul Hasnain
    Ali, Nauman
    Khan, Adnan
    Zhu, Yujun
    ENVIRONMENTAL RESEARCH, 2023, 226
  • [38] Pt/CeO2 and Pt/CeSnOx Catalysts for Low-Temperature CO Oxidation Prepared by Plasma-Arc Technique
    Kardash, Tatyana Y.
    Derevyannikova, Elizaveta A.
    Slavinskaya, Elena M.
    Stadnichenko, Andrey I.
    Maltsev, Vasiliy A.
    Zaikovskii, Alexey V.
    Novopashin, Sergey A.
    Boronin, Andrei I.
    Neyman, Konstantin M.
    FRONTIERS IN CHEMISTRY, 2019, 7
  • [39] Hydrogen generation from low-temperature water-rock reactions
    Mayhew, L. E.
    Ellison, E. T.
    McCollom, T. M.
    Trainor, T. P.
    Templeton, A. S.
    NATURE GEOSCIENCE, 2013, 6 (06) : 478 - 484
  • [40] Hydrogen generation from low-temperature water-rock reactions
    Mayhew L.E.
    Ellison E.T.
    McCollom T.M.
    Trainor T.P.
    Templeton A.S.
    Nature Geoscience, 2013, 6 (6) : 478 - 484