Lie algebras associated with labeled directed graphs

被引:0
作者
Molina, Mauricio Godoy [2 ]
Lagos, Diego [1 ]
机构
[1] Univ La Frontera, Dept Matemat & Estadist, Temuco, Chile
[2] Univ La Frontera, Dept Matemat & Estadist, Av Francisco Salazar, Temuco 01145, Chile
关键词
2-step nilpotent Lie algebras; complete bipartite graphs; degree preserving derivations; ideals; labeled directed graph; 2-STEP NILPOTENT GROUPS; GEOMETRY;
D O I
10.1080/00927872.2024.2315306
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct 2-step nilpotent Lie algebras using labeled directed simple graphs and give a criterion to detect certain ideals and subalgebras by finding special subgraphs. We prove that if a label occurs only once, then reversing its orientation leads to an isomorphic algebra. As a consequence, if every edge is labeled differently, the Lie algebra depends only on the underlying undirected graph. In addition, we construct the graphs of all 2-step nilpotent Lie algebras of dimension <= 6 and compute the algebra of strata preserving derivations of the Lie algebra associated with the complete bipartite graph Km,n with two different labelings.
引用
收藏
页码:3115 / 3125
页数:11
相关论文
共 29 条
  • [1] Agrachev A., 2020, Cambridge Studies in Advanced Mathematics, V181
  • [2] Degenerations of graph Lie algebras
    Alfaro Arancibia, B.
    Alvarez, M. A.
    Anza, Y.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (01) : 91 - 100
  • [3] ap A., 2009, MATH SURVEYS MONOGRA, DOI [10.1090/surv/154, DOI 10.1090/SURV/154]
  • [4] Spectral theory of a class of nilmanifolds attached to Clifford modules
    Bauer, Wolfram
    Furutani, Kenro
    Iwasaki, Chisato
    Laaroussi, Abdellah
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) : 557 - 583
  • [5] Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
  • [6] Automorphism groups of nilpotent Lie algebras associated to certain graphs
    Chakrabarti, Debraj
    Mainkar, Meera
    Swiatlowski, Savannah
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) : 263 - 273
  • [7] Chung F.K., 1997, Spectral graph theory, DOI DOI 10.1090/CBMS/092
  • [8] Corwin Lawrence J., 1990, Cambridge Studies Adv. Mathematics, V18
  • [9] Crandall G, 2002, J LIE THEORY, V12, P69
  • [10] Anosov automorphisms on compact nilmanifolds associated with graphs
    Dani, SG
    Mainkar, MG
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (06) : 2235 - 2251