Organic flux synthesis of covalent organic frameworks

被引:45
作者
Wang, Zhifang [1 ,2 ]
Zhang, Yushu [1 ]
Wang, Ting [1 ]
Hao, Liqin [1 ]
Lin, En [1 ]
Chen, Yao [1 ,3 ]
Cheng, Peng [1 ,2 ,4 ]
Zhang, Zhenjie [1 ,2 ,4 ]
机构
[1] Nankai Univ, Coll Chem, State Key Lab Med Chem Biol, Tianjin 300071, Peoples R China
[2] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
[3] Nankai Univ, Coll Pharm, Tianjin 300071, Peoples R China
[4] Nankai Univ, Renewable Energy Convers & Storage Ctr RECAST, Frontiers Sci Ctr New Organ Matter, Tianjin 300071, Peoples R China
来源
CHEM | 2023年 / 9卷 / 08期
基金
中国国家自然科学基金;
关键词
CRYSTALLINE; NETWORKS;
D O I
10.1016/j.chempr.2023.03.026
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
It remains challenging to synthesize highly crystalline covalent organic frameworks (COFs) with poor reversible bond linkages because of the irreversible bond formation chemistry, which typically affords COFs with underrated crystallinity and porosity. Here, we report a general, green, and scalable protocol to fabricate imide-linked COFs based on organic flux-mediated syntheses. In contrast to traditional solvothermal approaches, this synthetic methodology is controllable, environment-friendly without any toxic organic solvents, and can be easily scalable to a 10-g scale. After an in-depth investigation, we prove the existence of a two-step reaction mechanism, which adjusts the formation and crystallization rate of COFs. Thus, this flux synthesis route can produce COFs with enhanced crystallinity and porosity, leading to outstanding gas sorption/separation performance. Moreover, anhydride, carboxylic, and amide monomers can all be employed to produce imide-linked COFs. This work enriches the synthesis toolboxes for COFs and presents a potential pathway to industrial-scale synthesis of COFs.
引用
收藏
页码:2178 / 2193
页数:17
相关论文
共 56 条
[1]  
Beaudoin D, 2013, NAT CHEM, V5, P830, DOI [10.1038/nchem.1730, 10.1038/NCHEM.1730]
[2]   Soluble Poly(amide-imide)s from Diamide-Diamine Monomer with Trifluoromethyl Groups [J].
Byun, Taejoon ;
Kim, Seong Jong ;
Kim, Sang Youl .
POLYMERS, 2022, 14 (03)
[3]   Integrating single Ni sites into biomimetic networks of covalent organic frameworks for selective photoreduction of CO2 [J].
Chen, Xin ;
Dang, Qiang ;
Sa, Rongjian ;
Li, Liuyi ;
Li, Lingyun ;
Bi, Jinhong ;
Zhang, Zizhong ;
Long, Jinlin ;
Yu, Yan ;
Zou, Zhigang .
CHEMICAL SCIENCE, 2020, 11 (26) :6915-6922
[4]   Porous, crystalline, covalent organic frameworks [J].
Côté, AP ;
Benin, AI ;
Ockwig, NW ;
O'Keeffe, M ;
Matzger, AJ ;
Yaghi, OM .
SCIENCE, 2005, 310 (5751) :1166-1170
[5]   Chemical Conversion and Locking of the Imine Linkage: Enhancing the Functionality of Covalent Organic Frameworks [J].
Cusin, Luca ;
Peng, Haijun ;
Ciesielski, Artur ;
Samori, Paolo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (26) :14236-14250
[6]   Designed synthesis of large-pore crystalline polyimide covalent organic frameworks [J].
Fang, Qianrong ;
Zhuang, Zhongbin ;
Gu, Shuang ;
Kaspar, Robert B. ;
Zheng, Jie ;
Wang, Junhua ;
Qiu, Shilun ;
Yan, Yushan .
NATURE COMMUNICATIONS, 2014, 5
[7]   Covalent Organic Frameworks: Design, Synthesis, and Functions [J].
Geng, Keyu ;
He, Ting ;
Liu, Ruoyang ;
Dalapati, Sasanka ;
Tan, Ke Tian ;
Li, Zhongping ;
Tao, Shanshan ;
Gong, Yifan ;
Jiang, Qiuhong ;
Jiang, Donglin .
CHEMICAL REVIEWS, 2020, 120 (16) :8814-8933
[8]  
Gianneschi N.C., 2018, Chem. Soc. Rev, V48, P5266
[9]   Single step synthesis of W-modified LiNiO2 using an ammonium tungstate flux [J].
Goonetilleke, Damian ;
Mazilkin, Andrey ;
Weber, Daniel ;
Ma, Yuan ;
Fauth, Francois ;
Janek, Juergen ;
Brezesinski, Torsten ;
Bianchini, Matteo .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (14) :7841-7855
[10]   Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks [J].
Haase, Frederik ;
Lotsch, Bettina V. .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (23) :8469-8500