Multi-Objective Optimization of Chiral Metasurface for Sensing Based on a Distributed Algorithm

被引:3
作者
Liao, Xianglai [1 ]
Gui, Lili [1 ]
Bi, Shulei [1 ]
Gao, Ang [2 ]
Yu, Zhenming [1 ]
Xu, Kun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Dept Phys, Beijing 100876, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2024年 / 16卷 / 01期
基金
中国国家自然科学基金;
关键词
Metasurfaces; Statistics; Sociology; Optimization; Sensors; Plasmons; Genetic algorithms; Chiral plasmonic metasurface; refractive index sensing; multi-objective optimization; distributed algorithm; GENETIC-ALGORITHM; DESIGN;
D O I
10.1109/JPHOT.2023.3343458
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a distributed multi-objective optimization (DMO) method for designing chiral plasmonic metasurface that satisfies multiple objectives simultaneously. We aim to improve the refractive index sensitivity of the archetypical Born-Kuhn type chiral plasmonic metasurface while ensuring that circular dichroism (CD) is as pronounced as possible at a designated resonance wavelength. By leveraging distributed technology, the proposed method significantly improves the time efficiency of the optimization process. The simulation results demonstrate approximately 33% enhancement in sensitivity by DMO, as well as greater than 100% boost in time efficiency compared to stand-alone optimization approaches. These findings highlight the potential of the proposed method to guide the design of chiral plasmonic metasurface sensors, enabling the simultaneous optimization of multiple objectives and facilitating advancements in chiral optics and sensing applications.
引用
收藏
页数:6
相关论文
共 32 条
[1]   Assaying with PCF-based SPR refractive index biosensors: From recent configurations to outstanding detection limits [J].
Danlard, Iddrisu ;
Akowuah, Emmanuel Kofi .
OPTICAL FIBER TECHNOLOGY, 2020, 54
[2]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[3]   Multiobjective Statistical Learning Optimization of RGB Metalens [J].
Elsawy, Mahmoud M. R. ;
Gourdin, Anthony ;
Binois, Mickael ;
Duvigneau, Regis ;
Felbacq, Didier ;
Khadir, Samira ;
Genevet, Patrice ;
Lanteri, Stephane .
ACS PHOTONICS, 2021, 8 (08) :2498-2508
[4]   Meta-model-based multi-objective optimization for robust color reproduction using hybrid diffraction gratings [J].
Es-Saidi, Soukaina ;
Blaize, Sylvain ;
Macias, Demetrio .
OPTICS EXPRESS, 2020, 28 (03) :3388-3400
[5]   Plasmonic nanoantenna design and fabrication based on evolutionary optimization [J].
Feichtner, Thorsten ;
Selig, Oleg ;
Hecht, Bert .
OPTICS EXPRESS, 2017, 25 (10) :10828-10842
[6]   Optimization for Gold Nanostructure-Based Surface Plasmon Biosensors Using a Microgenetic Algorithm [J].
Fu, Po-Han ;
Lo, Shu-Cheng ;
Tsai, Po-Cheng ;
Lee, Kuang-Li ;
Wei, Pei-Kuen .
ACS PHOTONICS, 2018, 5 (06) :2320-2327
[7]   Numerical Modeling of 3D Chiral Metasurfaces for Sensing Applications [J].
Guglielmelli, Alexa ;
Nicoletta, Giuseppe ;
Valente, Liliana ;
Palermo, Giovanna ;
Strangi, Giuseppe .
CRYSTALS, 2022, 12 (12)
[8]   Nonlinear Born-Kuhn Analog for Chiral Plasmonics [J].
Gui, Lili ;
Hentschel, Mario ;
Defrance, Josselin ;
Krauth, Joachim ;
Weiss, Thomas ;
Giessen, Harald .
ACS PHOTONICS, 2019, 6 (12) :3306-3314
[9]   Neural-Network-Enabled Design of a Chiral Plasmonic Nanodimer for Target-Specific Chirality Sensing [J].
Han, Jeong Hyun ;
Lim, Yae-Chan ;
Kim, Ryeong Myeong ;
Lv, Jiawei ;
Cho, Nam Heon ;
Kim, Hyeohn ;
Namgung, Seok Daniel ;
Im, Sang Won ;
Nam, Ki Tae .
ACS NANO, 2023, 17 (03) :2306-2317
[10]   Plasmonic Resonance Coupling of Nanodisk Array/Thin Film on the Optical Fiber Tip for Integrated and Miniaturized Sensing Detection [J].
He, Hao ;
Wei, Xinran ;
He, Yijin ;
Liang, Yuzhang ;
Fang, Yurui ;
Peng, Wei .
SENSORS, 2023, 23 (08)