Multi-Objective Optimization of Chiral Metasurface for Sensing Based on a Distributed Algorithm

被引:2
作者
Liao, Xianglai [1 ]
Gui, Lili [1 ]
Bi, Shulei [1 ]
Gao, Ang [2 ]
Yu, Zhenming [1 ]
Xu, Kun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Dept Phys, Beijing 100876, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2024年 / 16卷 / 01期
基金
中国国家自然科学基金;
关键词
Metasurfaces; Statistics; Sociology; Optimization; Sensors; Plasmons; Genetic algorithms; Chiral plasmonic metasurface; refractive index sensing; multi-objective optimization; distributed algorithm; GENETIC-ALGORITHM; DESIGN;
D O I
10.1109/JPHOT.2023.3343458
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a distributed multi-objective optimization (DMO) method for designing chiral plasmonic metasurface that satisfies multiple objectives simultaneously. We aim to improve the refractive index sensitivity of the archetypical Born-Kuhn type chiral plasmonic metasurface while ensuring that circular dichroism (CD) is as pronounced as possible at a designated resonance wavelength. By leveraging distributed technology, the proposed method significantly improves the time efficiency of the optimization process. The simulation results demonstrate approximately 33% enhancement in sensitivity by DMO, as well as greater than 100% boost in time efficiency compared to stand-alone optimization approaches. These findings highlight the potential of the proposed method to guide the design of chiral plasmonic metasurface sensors, enabling the simultaneous optimization of multiple objectives and facilitating advancements in chiral optics and sensing applications.
引用
收藏
页数:6
相关论文
共 32 条
  • [1] Assaying with PCF-based SPR refractive index biosensors: From recent configurations to outstanding detection limits
    Danlard, Iddrisu
    Akowuah, Emmanuel Kofi
    [J]. OPTICAL FIBER TECHNOLOGY, 2020, 54
  • [2] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197
  • [3] Multiobjective Statistical Learning Optimization of RGB Metalens
    Elsawy, Mahmoud M. R.
    Gourdin, Anthony
    Binois, Mickael
    Duvigneau, Regis
    Felbacq, Didier
    Khadir, Samira
    Genevet, Patrice
    Lanteri, Stephane
    [J]. ACS PHOTONICS, 2021, 8 (08): : 2498 - 2508
  • [4] Meta-model-based multi-objective optimization for robust color reproduction using hybrid diffraction gratings
    Es-Saidi, Soukaina
    Blaize, Sylvain
    Macias, Demetrio
    [J]. OPTICS EXPRESS, 2020, 28 (03) : 3388 - 3400
  • [5] Plasmonic nanoantenna design and fabrication based on evolutionary optimization
    Feichtner, Thorsten
    Selig, Oleg
    Hecht, Bert
    [J]. OPTICS EXPRESS, 2017, 25 (10): : 10828 - 10842
  • [6] Optimization for Gold Nanostructure-Based Surface Plasmon Biosensors Using a Microgenetic Algorithm
    Fu, Po-Han
    Lo, Shu-Cheng
    Tsai, Po-Cheng
    Lee, Kuang-Li
    Wei, Pei-Kuen
    [J]. ACS PHOTONICS, 2018, 5 (06): : 2320 - 2327
  • [7] Numerical Modeling of 3D Chiral Metasurfaces for Sensing Applications
    Guglielmelli, Alexa
    Nicoletta, Giuseppe
    Valente, Liliana
    Palermo, Giovanna
    Strangi, Giuseppe
    [J]. CRYSTALS, 2022, 12 (12)
  • [8] Nonlinear Born-Kuhn Analog for Chiral Plasmonics
    Gui, Lili
    Hentschel, Mario
    Defrance, Josselin
    Krauth, Joachim
    Weiss, Thomas
    Giessen, Harald
    [J]. ACS PHOTONICS, 2019, 6 (12) : 3306 - 3314
  • [9] Neural-Network-Enabled Design of a Chiral Plasmonic Nanodimer for Target-Specific Chirality Sensing
    Han, Jeong Hyun
    Lim, Yae-Chan
    Kim, Ryeong Myeong
    Lv, Jiawei
    Cho, Nam Heon
    Kim, Hyeohn
    Namgung, Seok Daniel
    Im, Sang Won
    Nam, Ki Tae
    [J]. ACS NANO, 2023, : 2306 - 2317
  • [10] Plasmonic Resonance Coupling of Nanodisk Array/Thin Film on the Optical Fiber Tip for Integrated and Miniaturized Sensing Detection
    He, Hao
    Wei, Xinran
    He, Yijin
    Liang, Yuzhang
    Fang, Yurui
    Peng, Wei
    [J]. SENSORS, 2023, 23 (08)