Ursa: A Comprehensive Multiomics Toolbox for High-Throughput Single-Cell Analysis

被引:2
作者
Pan, Lu [1 ,2 ]
Mou, Tian [3 ]
Huang, Yue [2 ]
Hong, Weifeng [4 ]
Yu, Min [5 ]
Li, Xuexin [6 ,7 ]
机构
[1] Karolinska Inst, Inst Environm Med, S-17165 Solna, Sweden
[2] Karolinska Inst, Dept Med Epidemiol & Biostat, S-17165 Solna, Sweden
[3] Shenzhen Univ, Sch Biomed Engn, Shenzhen 518060, Guangdong, Peoples R China
[4] Fudan Univ, Zhongshan Hosp, Dept Radiat Oncol, Shanghai 200032, Peoples R China
[5] Southern Med Univ, Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Gen Surg, Guangzhou 510080, Guangdong, Peoples R China
[6] Karolinska Inst, Dept Med Biochem & Biophys, S-17165 Solna, Sweden
[7] China Med Univ, Affiliated Hosp 4, Dept Gen Surg, Shenyang 110032, Peoples R China
基金
瑞典研究理事会;
关键词
multiomics; single-cell; analysis workflow; multimodal analysis; RNA-SEQ; VISUALIZATION;
D O I
10.1093/molbev/msad267
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The burgeoning amount of single-cell data has been accompanied by revolutionary changes to computational methods to map, quantify, and analyze the outputs of these cutting-edge technologies. Many are still unable to reap the benefits of these advancements due to the lack of bioinformatics expertise. To address this issue, we present Ursa, an automated single-cell multiomics R package containing 6 automated single-cell omics and spatial transcriptomics workflows. Ursa allows scientists to carry out post-quantification single or multiomics analyses in genomics, transcriptomics, epigenetics, proteomics, and immunomics at the single-cell level. It serves as a 1-stop analytic solution by providing users with outcomes to quality control assessments, multidimensional analyses such as dimension reduction and clustering, and extended analyses such as pseudotime trajectory and gene-set enrichment analyses. Ursa aims bridge the gap between those with bioinformatics expertise and those without by providing an easy-to-use bioinformatics package for scientists in hoping to accelerate their research potential. Ursa is freely available at https://github.com/singlecellomics/ursa.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton
    Martinez-Garcia, Manuel
    Swan, Brandon K.
    Poulton, Nicole J.
    Gomez, Monica Lluesma
    Masland, Dashiell
    Sieracki, Michael E.
    Stepanauskas, Ramunas
    ISME JOURNAL, 2012, 6 (01) : 113 - 123
  • [22] Single-Cell Isolation Chip Integrated with Multicolor Barcode Array for High-Throughput Single-Cell Exosome Profiling in Tissue Samples
    Wang, Chao
    Zhang, Yu
    Wang, Jianbo
    Han, Yunrui
    Wang, Yihe
    Sun, Mingyuan
    Liang, Yanbo
    Huang, Miao
    Yu, Yang
    Hu, Huili
    Liu, Hong
    Han, Lin
    ADVANCED MATERIALS, 2025, 37 (05)
  • [23] Single-Cell Multiomics Techniques: From Conception to Applications
    Dimitriu, Maria A.
    Lazar-Contes, Irina
    Roszkowski, Martin
    Mansuy, Isabelle M.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
  • [24] Single-cell multiomics to advance cell therapy
    Goss, Kyndal
    Horwitz, Edwin M.
    CYTOTHERAPY, 2025, 27 (02) : 137 - 145
  • [25] Single-Cell Multiomics Integration by SCOT
    Demetci, Pinar
    Santorella, Rebecca
    Sandstede, Bjoern
    Noble, William Stafford
    Singh, Ritambhara
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (01) : 19 - 22
  • [26] Unbiasedly decoding the tumor microenvironment with single-cell multiomics analysis in pancreatic cancer
    Fu, Yifan
    Tao, Jinxin
    Liu, Tao
    Liu, Yueze
    Qiu, Jiangdong
    Su, Dan
    Wang, Ruobing
    Luo, Wenhao
    Cao, Zhe
    Weng, Guihu
    Zhang, Taiping
    Zhao, Yupei
    MOLECULAR CANCER, 2024, 23 (01)
  • [27] Double Emulsion Picoreactors for High-Throughput Single-Cell Encapsulation and Phenotyping via FACS
    Brower, Kara K.
    Khariton, Margarita
    Suzuki, Peter H.
    Still, Chris, II
    Kim, Gaeun
    Calhoun, Suzanne G. K.
    Qi, Lei S.
    Wang, Bo
    Fordyce, Polly M.
    ANALYTICAL CHEMISTRY, 2020, 92 (19) : 13262 - 13270
  • [28] Protocol for high-throughput single-cell patterning using a reusable ultrathin metal microstencil
    Tian, Qingqing
    Xing, Kunming
    Liu, Yongshu
    Wang, Qian
    Sun, Haonan
    Sun, Ying-Nan
    Zhang, Shusheng
    STAR PROTOCOLS, 2023, 4 (01):
  • [29] ScSmOP: a universal computational pipeline for single-cell single-molecule multiomics data analysis
    Jing, Kai
    Xu, Yewen
    Yang, Yang
    Yin, Pengfei
    Ning, Duo
    Huang, Guangyu
    Deng, Yuqing
    Chen, Gengzhan
    Li, Guoliang
    Tian, Simon Zhongyuan
    Zheng, Meizhen
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)
  • [30] Towards high-throughput parallel imaging and single-cell transcriptomics of microbial eukaryotic plankton
    Grujcic, Vesna
    Saarenpaa, Sami
    Sundh, John
    Sennblad, Bengt
    Norgren, Benjamin
    Latz, Meike
    Giacomello, Stefania
    Foster, Rachel A.
    Andersson, Anders F.
    PLOS ONE, 2024, 19 (01):