Ursa: A Comprehensive Multiomics Toolbox for High-Throughput Single-Cell Analysis

被引:2
|
作者
Pan, Lu [1 ,2 ]
Mou, Tian [3 ]
Huang, Yue [2 ]
Hong, Weifeng [4 ]
Yu, Min [5 ]
Li, Xuexin [6 ,7 ]
机构
[1] Karolinska Inst, Inst Environm Med, S-17165 Solna, Sweden
[2] Karolinska Inst, Dept Med Epidemiol & Biostat, S-17165 Solna, Sweden
[3] Shenzhen Univ, Sch Biomed Engn, Shenzhen 518060, Guangdong, Peoples R China
[4] Fudan Univ, Zhongshan Hosp, Dept Radiat Oncol, Shanghai 200032, Peoples R China
[5] Southern Med Univ, Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Gen Surg, Guangzhou 510080, Guangdong, Peoples R China
[6] Karolinska Inst, Dept Med Biochem & Biophys, S-17165 Solna, Sweden
[7] China Med Univ, Affiliated Hosp 4, Dept Gen Surg, Shenyang 110032, Peoples R China
基金
瑞典研究理事会;
关键词
multiomics; single-cell; analysis workflow; multimodal analysis; RNA-SEQ; VISUALIZATION;
D O I
10.1093/molbev/msad267
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The burgeoning amount of single-cell data has been accompanied by revolutionary changes to computational methods to map, quantify, and analyze the outputs of these cutting-edge technologies. Many are still unable to reap the benefits of these advancements due to the lack of bioinformatics expertise. To address this issue, we present Ursa, an automated single-cell multiomics R package containing 6 automated single-cell omics and spatial transcriptomics workflows. Ursa allows scientists to carry out post-quantification single or multiomics analyses in genomics, transcriptomics, epigenetics, proteomics, and immunomics at the single-cell level. It serves as a 1-stop analytic solution by providing users with outcomes to quality control assessments, multidimensional analyses such as dimension reduction and clustering, and extended analyses such as pseudotime trajectory and gene-set enrichment analyses. Ursa aims bridge the gap between those with bioinformatics expertise and those without by providing an easy-to-use bioinformatics package for scientists in hoping to accelerate their research potential. Ursa is freely available at https://github.com/singlecellomics/ursa.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Computational approaches for high-throughput single-cell data analysis
    Todorov, Helena
    Saeys, Yvan
    FEBS JOURNAL, 2019, 286 (08) : 1451 - 1467
  • [2] Single-Cell Multiomics
    Flynn, Emily
    Almonte-Loya, Ana
    Fragiadakis, Gabriela K.
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, 2023, 6 : 313 - 337
  • [3] Single-Cell Multiomics Analysis for Drug Discovery
    Nassar, Sam F.
    Raddassi, Khadir
    Wu, Terence
    METABOLITES, 2021, 11 (11)
  • [4] High-throughput single-cell sequencing in cancer research
    Jia, Qingzhu
    Chu, Han
    Jin, Zheng
    Long, Haixia
    Zhu, Bo
    SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2022, 7 (01)
  • [5] High-throughput microfluidic single-cell trapping arrays for biomolecular and imaging analysis
    Li, Xuan
    Lee, Abraham P.
    MICROFLUIDICS IN CELL BIOLOGY, PT C: MICROFLUIDICS FOR CELLULAR AND SUBCELLULAR ANALYSIS, 2018, 148 : 35 - 50
  • [6] Microfluidic single-cell multiomics analysis
    Xu, Xing
    Zhang, Qiannan
    Li, Mingyin
    Lin, Shiyan
    Liang, Shanshan
    Cai, Linfeng
    Zhu, Huanghuang
    Su, Rui
    Yang, Chaoyong
    VIEW, 2023, 4 (01)
  • [7] High-throughput and single-cell T cell receptor sequencing technologies
    Pai, Joy A.
    Satpathy, Ansuman T.
    NATURE METHODS, 2021, 18 (08) : 881 - 892
  • [8] Automation enables high-throughput and reproducible single-cell transcriptomics library preparation
    Kind, David
    Baskaran, Praveen
    Ramirez, Fidel
    Giner, Martin
    Hayes, Michael
    Santacruz, Diana
    Koss, Carolin K.
    el Kasmi, Karim C.
    Wijayawardena, Bhagya
    Viollet, Coralie
    SLAS TECHNOLOGY, 2022, 27 (02): : 135 - 142
  • [9] Microfluidic high-throughput single-cell mechanotyping: Devices and applications
    Choi, Gihoon
    Tang, Zifan
    Guan, Weihua
    NANOTECHNOLOGY AND PRECISION ENGINEERING, 2021, 4 (04)
  • [10] The new technologies of high-throughput single-cell RNA sequencing
    Vodiasova, E. A.
    Chelebieva, E. S.
    Kuleshova, O. N.
    VAVILOVSKII ZHURNAL GENETIKI I SELEKTSII, 2019, 23 (05): : 508 - 518