Different estimation methods for the unit inverse exponentiated weibull distribution

被引:9
|
作者
Hassan, Amal S. [1 ]
Alharbi, Reem S. [2 ,3 ]
机构
[1] Cairo Univ, Fac Grad Studies Stat Res, Giza, Egypt
[2] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah 23826, Saudi Arabia
关键词
inverse exponentiated weibull distribution; stochastic ordering; Arimoto measure; stress strength model; maximum product spacing; LINDLEY DISTRIBUTION; REGRESSION-MODEL; FAMILY;
D O I
10.29220/CSAM.2023.30.2.191
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Unit distributions are frequently used in probability theory and statistics to depict meaningful variables having values between zero and one. Using convenient transformation, the unit inverse exponentiated weibull (UIEW) distribution, which is equally useful for modelling data on the unit interval, is proposed in this study. Quantile function, moments, incomplete moments, uncertainty measures, stochastic ordering, and stress-strength reliability are among the statistical properties provided for this distribution. To estimate the parameters as-sociated to the recommended distribution, well-known estimation techniques including maximum likelihood, maximum product of spacings, least squares, weighted least squares, Cramer von Mises, Anderson-Darling, and Bayesian are utilised. Using simulated data, we compare how well the various estimators perform. According to the simulated outputs, the maximum product of spacing estimates has lower values of accuracy measures than alternative estimates in majority of situations. For two real datasets, the proposed model outperforms the beta, Kumaraswamy, unit Gompartz, unit Lomax and complementary unit weibull distributions based on various comparative indicators.
引用
收藏
页码:191 / 213
页数:23
相关论文
共 50 条
  • [41] PROPERTIES AND METHODS OF ESTIMATION FOR A BIVARIATE EXPONENTIATED FRECHET DISTRIBUTION
    Saboor, Abdus
    Bakouch, Hassan S.
    Moala, Fernando A.
    Hussain, Sheraz
    MATHEMATICA SLOVACA, 2020, 70 (05) : 1211 - 1230
  • [42] Bayesian estimation of inverse weibull distribution scale parameter under the different loss functions
    Koksal Babacan, Esin
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2024, 42 (04): : 1108 - 1115
  • [43] The Gamma Exponentiated Exponential-Weibull Distribution
    Pogany, Tibor K.
    Saboor, Abdus
    FILOMAT, 2016, 30 (12) : 3159 - 3170
  • [44] Parameter Estimation of the Weighted Generalized Inverse Weibull Distribution
    Sofi Mudasir
    S. P. Ahmad
    Journal of Statistical Theory and Applications, 2021, 20 : 395 - 406
  • [45] Parameter Estimation of the Weighted Generalized Inverse Weibull Distribution
    Mudasir, Sofi
    Ahmad, S. P.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2021, 20 (02): : 395 - 406
  • [46] Bivariate Mixture of Inverse Weibull Distribution: Properties and Estimation
    AL-Moisheer, A. S.
    Alotaibi, Refah Mohammed
    Alomani, Ghadah A.
    Rezk, H.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [47] A simple derivation of moments of the Exponentiated Weibull distribution
    Choudhury, A
    METRIKA, 2005, 62 (01) : 17 - 22
  • [48] The Exponentiated Weibull-Pareto Distribution with Application
    Afify, Ahmed Z.
    Yousof, Haitham M.
    Hamedani, G. G.
    Aryal, Gokarna R.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2016, 15 (04): : 326 - 344
  • [49] A Simple Derivation of Moments of the Exponentiated Weibull Distribution
    Amit Choudhury
    Metrika, 2005, 62 : 17 - 22
  • [50] THE EXTENDED EXPONENTIATED WEIBULL DISTRIBUTION AND ITS APPLICATIONS
    Mahmoudi, Eisa
    Meshkat, Rahmat Sadat
    Kargar, Batool
    Kundu, Debasis
    STATISTICA, 2018, 78 (04) : 363 - 396