Two Diophantine Inequalities over Primes with Fractional Power

被引:1
作者
Liu, Huafeng [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2023年 / 18卷 / 06期
基金
中国国家自然科学基金;
关键词
Diophantine inequality; exponential sum; prime; NUMBERS;
D O I
10.1007/s11464-021-0260-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 1 < c < (256) /(119), c not equal 2 and N be a sufficiently large real number. In this paper, we first prove that the Diophantine inequality |p (c)(1)+p (c)(2)+<middle dot> <middle dot> <middle dot>+p (c)(6)-N| < log(-1) N is solvable in primes p1, p2, ... , p6. Moreover, we prove that for almost all R is an element of (N, 2N], the Diophantine inequality |p (c)(1)+ p (c)(2 )+ p (c)(3) - R| < log(-1) N is solvable in primes p1, p2, p3. These results constitute further improvements upon previous results.
引用
收藏
页码:1349 / 1362
页数:14
相关论文
共 20 条
[1]  
[Anonymous], 1996, Acta Math. Sin
[2]  
[Anonymous], 1985, The Riemann Zeta-Function
[3]  
[Anonymous], 1952, Mat. Sbornik N.S., V30, P105
[4]   A ternary Diophantine inequality over primes [J].
Baker, Roger ;
Weingartner, Andreas .
ACTA ARITHMETICA, 2014, 162 (02) :159-196
[5]   Some applications of the double large sieve [J].
Baker, Roger ;
Weingartner, Andreas .
MONATSHEFTE FUR MATHEMATIK, 2013, 170 (3-4) :261-304
[6]   On a diophantine inequality involving prime numbers (III) [J].
Cai, YC .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 1999, 15 (03) :387-394
[7]   A ternary Diophantine inequality involving primes [J].
Cai, Yingchun .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (08) :2257-2268
[8]  
[曹晓东 Cao Xiao Dong], 2002, [数学学报, Acta Mathematica Sinica], V45, P361
[9]   On the Waring-Goldbach problem with small non-integer exponent [J].
Garaev, MZ .
ACTA ARITHMETICA, 2003, 108 (03) :297-302
[10]  
Graham SW., 1991, Van der Corputs method of exponential sums, DOI [10.1017/CBO9780511661976, DOI 10.1017/CBO9780511661976]