Histopathology Image Classification Using Deep Manifold Contrastive Learning

被引:0
作者
Tan, Jing Wei [1 ]
Jeong, Won-Ki [1 ]
机构
[1] Korea Univ, Dept Comp Sci & Engn, Seoul, South Korea
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VI | 2023年 / 14225卷
基金
新加坡国家研究基金会;
关键词
Contrastive learning; Manifold learning; Geodesic distance; Histopathology image classification; Multiple instance learning;
D O I
10.1007/978-3-031-43987-2_66
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contrastive learning has gained popularity due to its robustness with good feature representation performance. However, cosine distance, the commonly used similarity metric in contrastive learning, is not well suited to represent the distance between two data points, especially on a nonlinear feature manifold. Inspired by manifold learning, we propose a novel extension of contrastive learning that leverages geodesic distance between features as a similarity metric for histopathology whole slide image classification. To reduce the computational overhead in manifold learning, we propose geodesic-distance-based feature clustering for efficient contrastive loss evaluation using prototypes without time-consuming pairwise feature similarity comparison. The efficacy of the proposed method is evaluated on two real-world histopathology image datasets. Results demonstrate that our method outperforms state-of-the-art cosine-distance-based contrastive learning methods.
引用
收藏
页码:683 / 692
页数:10
相关论文
共 14 条
[1]   Ensemble Deep Manifold Similarity Learning using Hard Proxies [J].
Aziere, Nicolas ;
Todorovic, Sinisa .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7291-7299
[2]  
Chen T, 2020, PR MACH LEARN RES, V119
[3]   Deep Manifold Embedding for Hyperspectral Image Classification [J].
Gong, Zhiqiang ;
Hu, Weidong ;
Du, Xiaoyong ;
Zhong, Ping ;
Hu, Panhe .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (10) :10430-10443
[4]   HCSC: Hierarchical Contrastive Selective Coding [J].
Guo, Yuanfan ;
Xu, Minghao ;
Li, Jiawen ;
Ni, Bingbing ;
Zhu, Xuanyu ;
Sun, Zhenbang ;
Xu, Yi .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :9696-9705
[5]   Momentum Contrast for Unsupervised Visual Representation Learning [J].
He, Kaiming ;
Fan, Haoqi ;
Wu, Yuxin ;
Xie, Saining ;
Girshick, Ross .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :9726-9735
[6]   Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer [J].
Kather, Jakob Nikolas ;
Pearson, Alexander T. ;
Halama, Niels ;
Jaeger, Dirk ;
Krause, Jeremias ;
Loosen, Sven H. ;
Marx, Alexander ;
Boor, Peter ;
Tacke, Frank ;
Neumann, Ulf Peter ;
Grabsch, Heike I. ;
Yoshikawa, Takaki ;
Brenner, Hermann ;
Chang-Claude, Jenny ;
Hoffmeister, Michael ;
Trautwein, Christian ;
Luedde, Tom .
NATURE MEDICINE, 2019, 25 (07) :1054-+
[7]   A Geometric Understanding of Deep Learning [J].
Lei, Na ;
An, Dongsheng ;
Guo, Yang ;
Su, Kehua ;
Liu, Shixia ;
Luo, Zhongxuan ;
Yau, Shing-Tung ;
Gu, Xianfeng .
ENGINEERING, 2020, 6 (03) :361-374
[8]  
Li JN, 2021, Arxiv, DOI arXiv:2005.04966
[9]  
Lu JW, 2015, PROC CVPR IEEE, P1137, DOI 10.1109/CVPR.2015.7298717
[10]  
Ommer B, 2022, Introduction to similarity and deep metric learning