RadGT: Graph and Transformer-Based Automotive Radar Point Cloud Segmentation

被引:0
作者
Sevimli, Rasim A. [1 ]
Ucuncu, Murat [1 ]
Koc, Aykut [2 ,3 ]
机构
[1] Baskent Univ, Dept Elect & Elect Engn, TR-06810 Ankara, Turkiye
[2] Bilkent Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkiye
[3] Bilkent Univ, UMRAM, TR-06800 Ankara, Turkiye
关键词
Sensor applications; automotive RADAR; graph signal processing (GSP); point cloud processing; segmentation; transformers;
D O I
10.1109/LSENS.2023.3327593
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The need for visual perception systems providing situational awareness to autonomous vehicles has grown significantly. While traditional deep neural networks are effective for solving 2-D Euclidean problems, point cloud analysis, particularly for radar data, contains unique challenges because of the irregular geometry of point clouds. This letter proposes a novel transformer-based architecture for radar point clouds adapted to the graph signal processing (GSP) framework, designed to handle non-Euclidean and irregular signal structures. We provide experimental results by using well-established benchmarks on the nuScenes and RadarScenes datasets to validate our proposed method.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 19 条
[1]   Autonomous vehicles: challenges, opportunities, and future implications for transportation policies [J].
Bagloee, Saeed Asadi ;
Tavana, Madjid ;
Asadi, Mohsen ;
Oliver, Tracey .
JOURNAL OF MODERN TRANSPORTATION, 2016, 24 (04) :284-303
[2]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[3]   PCT: Point cloud transformer [J].
Guo, Meng-Hao ;
Cai, Jun-Xiong ;
Liu, Zheng-Ning ;
Mu, Tai-Jiang ;
Martin, Ralph R. ;
Hu, Shi-Min .
COMPUTATIONAL VISUAL MEDIA, 2021, 7 (02) :187-199
[4]  
Jiang MY, 2018, Arxiv, DOI [arXiv:1807.00652, 10.48550/arXiv.1807.00652]
[5]   PointNGCNN: Deep convolutional networks on 3D point clouds with neighborhood graph filters [J].
Lu, Qiang ;
Chen, Chao ;
Xie, Wenjun ;
Luo, Yuetong .
COMPUTERS & GRAPHICS-UK, 2020, 86 :42-51
[6]   Detection and Localization of Unmanned Aircraft Systems Using Millimeter-Wave Automotive Radar Sensors [J].
Morris P.J.B. ;
Hari K.V.S. .
IEEE Sensors Letters, 2021, 5 (06)
[7]  
Schumann O, 2021, 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), P939
[8]  
Schumann O, 2018, 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), P2179, DOI 10.23919/ICIF.2018.8455344
[9]   Graph signal processing based object classification for automotive RADAR point clouds [J].
Sevimli, Rasim Aknn ;
Ucuncu, Murat ;
Koc, Aykut .
DIGITAL SIGNAL PROCESSING, 2023, 137
[10]   Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud [J].
Shi, Weijing ;
Rajkumar, Ragunathan .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :1708-1716