Localized Sparse Incomplete Multi-View Clustering

被引:63
|
作者
Liu, Chengliang [1 ]
Wu, Zhihao [1 ]
Wen, Jie [1 ]
Xu, Yong [2 ,3 ]
Huang, Chao [1 ]
机构
[1] Harbin Inst Technol, Shenzhen Key Lab Visual Object Detect & Recognit, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Shenzhen Key Lab Visual Object Detect & Recognit, Shenzhen 518055, Peoples R China
[3] Pengcheng Lab, Shenzhen 518055, Peoples R China
关键词
Common latent representation; graph embedding; incomplete multi-view clustering; matrix factorization;
D O I
10.1109/TMM.2022.3194332
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Incomplete multi-view clustering, which aims to solve the clustering problem on the incomplete multi-view data with partial view missing, has received more and more attention in recent years. Although numerous methods have been developed, most of the methods either cannot flexibly handle the incomplete multi-view data with arbitrary missing views or do not consider the negative factor of information imbalance among views. Moreover, some methods do not fully explore the local structure of all incomplete views. To tackle these problems, this paper proposes a simple but effective method, named localized sparse incomplete multi-view clustering (LSIMVC). Different from the existing methods, LSIMVC intends to learn a sparse and structured consensus latent representation from the incomplete multi-view data by optimizing a sparse regularized and novel graph embedded multi-view matrix factorization model. Specifically, in such a novel model based on the matrix factorization, a norm based sparse constraint is introduced to obtain the sparse low-dimensional individual representations and the sparse consensus representation. Moreover, a novel local graph embedding term is introduced to learn the structured consensus representation. Different from the existing works, our local graph embedding term aggregates the graph embedding task and consensus representation learning task into a concise term. Furthermore, to reduce the imbalance factor of incomplete multi-view learning, an adaptive weighted learning scheme is introduced to LSIMVC. Comprehensive experimental results performed on six incomplete multi-view databases verify that the performance of our LSIMVC is superior to the state-of-the-art IMC approaches.
引用
收藏
页码:5539 / 5551
页数:13
相关论文
共 50 条
  • [1] Localized and Balanced Efficient Incomplete Multi-view Clustering
    Wen, Jie
    Xu, Gehui
    Liu, Chengliang
    Fei, Lunke
    Huang, Chao
    Wang, Wei
    Xu, Yong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2927 - 2935
  • [2] Incomplete Multi-view Clustering
    Gao, Hang
    Peng, Yuxing
    Jian, Songlei
    INTELLIGENT INFORMATION PROCESSING VIII, 2016, 486 : 245 - 255
  • [3] Anchor-based sparse subspace incomplete multi-view clustering
    Li, Ao
    Feng, Cong
    Wang, Zhuo
    Sun, Yuegong
    Wang, Zizhen
    Sun, Ling
    WIRELESS NETWORKS, 2024, 30 (06) : 5559 - 5570
  • [4] Adversarial Incomplete Multi-view Clustering
    Xu, Cai
    Guan, Ziyu
    Zhao, Wei
    Wu, Hongchang
    Niu, Yunfei
    Ling, Beilei
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3933 - 3939
  • [5] Projective Incomplete Multi-View Clustering
    Deng, Shijie
    Wen, Jie
    Liu, Chengliang
    Yan, Ke
    Xu, Gehui
    Xu, Yong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 10539 - 10551
  • [6] Incomplete multi-view spectral clustering
    Zhao, Qianli
    Zong, Linlin
    Zhang, Xianchao
    Liu, Xinyue
    Yu, Hong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (03) : 2991 - 3001
  • [7] Incomplete multi-view clustering based on weighted sparse and low rank representation
    Liang Zhao
    Jie Zhang
    Tao Yang
    Zhikui Chen
    Applied Intelligence, 2022, 52 : 14822 - 14838
  • [8] Incomplete multi-view clustering based on weighted sparse and low rank representation
    Zhao, Liang
    Zhang, Jie
    Yang, Tao
    Chen, Zhikui
    APPLIED INTELLIGENCE, 2022, 52 (13) : 14822 - 14838
  • [9] Incomplete Multi-View Clustering With Complete View Guidance
    Chen, Zhikui
    Li, Yue
    Lou, Kai
    Zhao, Liang
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1247 - 1251
  • [10] Doubly Aligned Incomplete Multi-view Clustering
    Hu, Menglei
    Chen, Songcan
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2262 - 2268