Quantum trajectories of dissipative time crystals

被引:12
作者
Cabot, Albert [1 ]
Muhle, Leah Sophie [1 ]
Carollo, Federico [1 ]
Lesanovsky, Igor [1 ,2 ,3 ]
机构
[1] Eberhard Karls Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany
[2] Univ Nottingham, Sch Phys, Astron, Nottingham NG7 2RD, England
[3] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sys, Nottingham NG7 2RD, England
关键词
STEADY-STATE; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; SYSTEMS; DRIVEN; QUTIP;
D O I
10.1103/PhysRevA.108.L041303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We explore the boundary time-crystal transition at the level of quantum trajectories which result from continuous monitoring. This Letter is motivated by recent experiments [G. Ferioli, A. Glicenstein, I. Ferrier-Barbut, and A. Browaeys, Nat. Phys. 19, 1345 (2023)] realizing this many-body system and which allow one in principle to gain in situ information on its nonequilibrium dynamics. We find that the photon count signal as well as the homodyne current allow one to identify and characterize critical behavior at the time-crystal phase transition. In the time-crystal phase these quantities display persistent oscillations, resolvable in finite systems and in individual realizations. At the transition point the dynamics of the emission signals feature intermittent strong fluctuations, which can be understood through a simple nonlinear phase model. We furthermore show that the time-integrated homodyne current can serve as a useful dynamical order parameter. From this perspective the time crystal can be viewed as a state of matter in which different oscillation patterns coexist.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Bottomonium suppression in an open quantum system using the quantum trajectories method
    Brambilla, Nora
    Angel Escobedo, Miguel
    Strickland, Michael
    Vairo, Antonio
    Vander Griend, Peter
    Weber, Johannes Heinrich
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
  • [42] Bohmian quantum trajectories from coherent states
    Dey, Sanjib
    Fring, Andreas
    [J]. PHYSICAL REVIEW A, 2013, 88 (02):
  • [43] On Existence of Quantum Trajectories for the Linear Deterministic Processes
    Jeknic-Dugic, Jasmina
    Arsenijevic, Momir
    Dugic, Miroljub
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (03)
  • [44] Dissipative Solitary Waves in Granular Crystals
    Carretero-Gonzalez, R.
    Khatri, D.
    Porter, Mason A.
    Kevrekidis, P. G.
    Daraio, C.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (02)
  • [45] Quons in a quantum dissipative system
    Lee, Taejin
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (08):
  • [46] Dissipative quantum transport in a nanowire
    Bandyopadhyay, M.
    Dattagupta, S.
    [J]. PHYSICAL REVIEW B, 2021, 104 (12)
  • [47] Dissipative Effects on Quantum Sticking
    Zhang, Yanting
    Clougherty, Dennis P.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (17)
  • [48] Dissipative quantum disordered models
    Cugliandolo, Leticia F.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (19): : 2795 - 2804
  • [49] Non-stationarity and dissipative time crystals: spectral properties and finite-size effects
    Booker, Cameron
    Buca, Berislav
    Jaksch, Dieter
    [J]. NEW JOURNAL OF PHYSICS, 2020, 22 (08):
  • [50] Fast computation of dissipative quantum systems with ensemble rank truncation
    McCaul, Gerard
    Jacobs, Kurt
    Bondar, Denys, I
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (01):