Quantum trajectories of dissipative time crystals

被引:12
|
作者
Cabot, Albert [1 ]
Muhle, Leah Sophie [1 ]
Carollo, Federico [1 ]
Lesanovsky, Igor [1 ,2 ,3 ]
机构
[1] Eberhard Karls Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany
[2] Univ Nottingham, Sch Phys, Astron, Nottingham NG7 2RD, England
[3] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sys, Nottingham NG7 2RD, England
关键词
STEADY-STATE; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; SYSTEMS; DRIVEN; QUTIP;
D O I
10.1103/PhysRevA.108.L041303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We explore the boundary time-crystal transition at the level of quantum trajectories which result from continuous monitoring. This Letter is motivated by recent experiments [G. Ferioli, A. Glicenstein, I. Ferrier-Barbut, and A. Browaeys, Nat. Phys. 19, 1345 (2023)] realizing this many-body system and which allow one in principle to gain in situ information on its nonequilibrium dynamics. We find that the photon count signal as well as the homodyne current allow one to identify and characterize critical behavior at the time-crystal phase transition. In the time-crystal phase these quantities display persistent oscillations, resolvable in finite systems and in individual realizations. At the transition point the dynamics of the emission signals feature intermittent strong fluctuations, which can be understood through a simple nonlinear phase model. We furthermore show that the time-integrated homodyne current can serve as a useful dynamical order parameter. From this perspective the time crystal can be viewed as a state of matter in which different oscillation patterns coexist.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Quantum thermodynamics of boundary time-crystals
    Carollo, Federico
    Lesanovsky, Igor
    Antezza, Mauro
    De Chiara, Gabriele
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (03):
  • [22] Quantum trajectories for time-dependent adiabatic master equations
    Yip, Ka Wa
    Albash, Tameem
    Lidar, Daniel A.
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [23] Dissipative Quantum Church-Turing Theorem
    Kliesch, M.
    Barthel, T.
    Gogolin, C.
    Kastoryano, M.
    Eisert, J.
    PHYSICAL REVIEW LETTERS, 2011, 107 (12)
  • [24] Optimal working point in dissipative quantum annealing
    Arceci, Luca
    Barbarino, Simone
    Rossini, Davide
    Santoro, Giuseppe E.
    PHYSICAL REVIEW B, 2018, 98 (06)
  • [25] Dissipative quantum Hopfield network: a numerical analysis
    Torres, Joaquin J.
    Manzano, Daniel
    NEW JOURNAL OF PHYSICS, 2024, 26 (10):
  • [26] Dissipative quantum-light-field engineering
    Kiffner, Martin
    Dorner, Uwe
    Jaksch, Dieter
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [27] Dissipative quantum error correction and application to quantum sensing with trapped ions
    Reiter, F.
    Sorensen, A. S.
    Zoller, P.
    Muschik, C. A.
    NATURE COMMUNICATIONS, 2017, 8
  • [28] Dissipative quantum repeater
    Ghasemi, M.
    Tavassoly, M. K.
    QUANTUM INFORMATION PROCESSING, 2019, 18 (04)
  • [29] Quantum dissipative adaptation
    Valente, Daniel
    Brito, Frederico
    Werlang, Thiago
    COMMUNICATIONS PHYSICS, 2021, 4 (01)
  • [30] Dissipative quantum dynamics
    Cugliandolo, Leticia F.
    INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2008 (IW-SMI 2008), 2009, 143