GLOBAL STABILITY OF ALMOST PERIODIC SOLUTIONS IN POPULATION DYNAMICS

被引:0
作者
Diaz-Marin, Homero G. [1 ]
Osuna, Osvaldo [2 ]
机构
[1] Univ Michoacana, Fac Ciencias Fis Matemat, Edif Alfa,Ciudad Univ, Morelia 58040, Michoacan, Mexico
[2] Univ Michoacana, Inst Fis & Matemat, Edif C-3,Ciudad Univ, Morelia 58040, Michoacan, Mexico
关键词
Global stability; population dynamics; almost periodic functions;
D O I
10.1090/qam/1636
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study first order differential equations with continuous almost periodic time dependence. We propose existence and global stability criteria of almost periodic solutions. Our results are specially useful in the study of one species population dynamics, such as logistic models with almost periodic parameters. Almost periodic time dependence also provides an explanation for oscillatory solutions in models of hematopoiesis disease dynamics.
引用
收藏
页码:615 / 632
页数:18
相关论文
共 14 条
  • [1] On the global dynamic behaviour for a generalized haematopoiesis model with almost periodic coefficients and oscillating circulation loss rate
    Amster, Pablo
    Balderrama, Rocio
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (10) : 3976 - 3997
  • [2] Besicovitch A.S., 1932, Almost Periodic Functions
  • [3] Bohr H., 1947, ALMOST PERIODIC FUNC
  • [4] Bostan M, 2006, DIFFER INTEGRAL EQU, V19, P91
  • [5] Brauer F., 2012, TEXTS APPL MATH, DOI DOI 10.1007/978-1-4614-1686-9
  • [6] Corduneanu C., 1989, Almost Periodic Functions. Second English Edition
  • [7] Fink AM., 1974, Almost Periodic Differential Equations. Lectures Notes in Mathematics, V377, DOI [10.1007/BFb0070324, DOI 10.1007/BFB0070324]
  • [8] Glass L, 1979, Ann N Y Acad Sci, V316, P214, DOI 10.1111/j.1749-6632.1979.tb29471.x
  • [9] Hale J. K., 1980, Ordinary differential equations, V2nd
  • [10] The effect of periodic habitat fluctuations on a nonlinear insect population model
    Henson, SM
    Cushing, JM
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 36 (02) : 201 - 226