SIRT2 alleviated renal fibrosis by deacetylating SMAD2 and SMAD3 in renal tubular epithelial cells

被引:13
|
作者
Yang, Shu [1 ,2 ,3 ]
Yang, Guangyan [1 ,2 ]
Wang, Xinyu [1 ,2 ]
Xiang, Jiaqing [1 ,2 ]
Kang, Lin [1 ,2 ,3 ,4 ]
Liang, Zhen [1 ,2 ,3 ]
机构
[1] Jinan Univ, Shenzhen Peoples Hosp, Clin Med Coll 2, Dept Geriatr, Shenzhen, Peoples R China
[2] Southern Univ Sci & Technol, Affiliated Hosp 1, Shenzhen 518020, Guangdong, Peoples R China
[3] Jinan Univ, Shenzhen Peoples Hosp, The Clin Med Coll 2, Guangdong Prov Clin Res Ctr Geriatr,Shenzhen Clin, Shenzhen 518020, Guangdong, Peoples R China
[4] Southern Univ Sci & Technol, Shenzhen Peoples Hosp, Biobank Natl Innovat Ctr Adv Med Devices, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
TGF-BETA; TUBULOINTERSTITIAL FIBROSIS; DEPENDENT DEGRADATION; GROWTH; ACETYLATION; KIDNEY; INJURY; UBIQUITINATION; INHIBITION; EXPRESSION;
D O I
10.1038/s41419-023-06169-1
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Transforming growth factor-beta (TGF-beta) is the primary factor that drives fibrosis in most, if not all, forms of chronic kidney disease. In kidneys that are obstructed, specific deletion of Sirt2 in renal tubule epithelial cells (TEC) has been shown to aggravate renal fibrosis, while renal tubule specific overexpression of Sirt2 has been shown to ameliorate renal fibrosis. Similarly, specific deletion of Sirt2 in hepatocyte aggravated CCl4-induced hepatic fibrosis. In addition, we have demonstrated that SIRT2 overexpression and knockdown restrain and enhance TGF-beta-induced fibrotic gene expression, respectively, in TEC. Mechanistically, SIRT2 reduced the phosphorylation, acetylation, and nuclear localization levels of SMAD2 and SMAD3, leading to inhibition of the TGF-beta signaling pathway. Further studies have revealed that that SIRT2 was able to directly interact with and deacetylate SMAD2 at lysine 451, promoting its ubiquitination and degradation. Notably, loss of SMAD specific E3 ubiquitin protein ligase 2 abolishes the ubiquitination and degradation of SMAD2 induced by SIRT2 in SMAD2. Regarding SMAD3, we have found that SIRT2 interact with and deacetylates SMAD3 at lysine 341 and 378 only in the presence of TGF-beta, thereby reducing its activation. This study provides initial indication of the anti-fibrotic role of SIRT2 in renal tubules and hepatocytes, suggesting its therapeutic potential for fibrosis.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] SIRT2 alleviated renal fibrosis by deacetylating SMAD2 and SMAD3 in renal tubular epithelial cells
    Shu Yang
    Guangyan Yang
    Xinyu Wang
    Jiaqing Xiang
    Lin Kang
    Zhen Liang
    Cell Death & Disease, 14
  • [2] Sirt6 Alleviated Liver Fibrosis by Deacetylating Conserved Lysine 54 on Smad2 in Hepatic Stellate Cells
    Zhang, Jinhang
    Li, Yanping
    Liu, Qinhui
    Huang, Ya
    Li, Rui
    Wu, Tong
    Zhang, Zijing
    Zhou, Jian
    Huang, Hui
    Tang, Qin
    Huang, Cuiyuan
    Zhao, Yingnan
    Zhang, Guorong
    Jiang, Wei
    Mo, Li
    Zhang, Jian
    Xie, Wen
    He, Jinhan
    HEPATOLOGY, 2021, 73 (03) : 1140 - 1157
  • [3] Smad Anchor for Receptor Activation Regulates High Glucose-Induced EMT via Modulation of Smad2 and Smad3 Activities in Renal Tubular Epithelial Cells
    Tang, Wen-bin
    Ling, Guang-hui
    Sun, Lin
    Zhang, Ke
    Zhu, Xuejing
    Zhou, Xun
    Li, Fu-you
    NEPHRON, 2015, 130 (03) : 213 - 220
  • [4] Smad2 and Smad3 play antagonistic roles in high glucose-induced renal tubular fibrosis via the regulation of SnoN
    Wang, Yuanyuan
    Zhang, Xiaohuan
    Mao, Yanwen
    Liang, Luqun
    Liu, Lingling
    Peng, Wei
    Liu, Huiming
    Xiao, Ying
    Zhang, Yingying
    Zhang, Fan
    Shi, Mingjun
    Liu, Lirong
    Guo, Bing
    EXPERIMENTAL AND MOLECULAR PATHOLOGY, 2020, 113
  • [5] TSAd interacts with Smad2 and Smad3
    Richard, K. C.
    Bertolesi, G. E.
    Dunfield, L. D.
    McMaster, C. R.
    Nachtigal, M. W.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 347 (01) : 266 - 272
  • [6] Opposing Roles for Smad2 and Smad3 in Peritoneal Fibrosis in Vivo and in Vitro
    Duan, Wen-Juan
    Yu, Xueqing
    Huang, Xiao-Ru
    Yu, Jian-wen
    Lan, Hui Yao
    AMERICAN JOURNAL OF PATHOLOGY, 2014, 184 (08): : 2275 - 2284
  • [7] NDRG2 knockdown promotes fibrosis in renal tubular epithelial cells through TGF-β1/Smad3 pathway
    Jin, Zhibo
    Gu, Chaohui
    Tian, Fengyan
    Jia, Zhankui
    Yang, Jinjian
    CELL AND TISSUE RESEARCH, 2017, 369 (03) : 603 - 610
  • [8] NDRG2 knockdown promotes fibrosis in renal tubular epithelial cells through TGF-β1/Smad3 pathway
    Zhibo Jin
    Chaohui Gu
    Fengyan Tian
    Zhankui Jia
    Jinjian Yang
    Cell and Tissue Research, 2017, 369 : 603 - 610
  • [9] The endogenous ratio of Smad2 and Smad3 influences the cytostatic function of Smad3
    Kim, SG
    Kim, HA
    Jong, HS
    Park, JH
    Kim, NK
    Hong, SH
    Kim, TY
    Bang, YJ
    MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (10) : 4672 - 4683
  • [10] Smad7 inhibits fibrotic effect of TGF-β on renal tubular epithelial cells by blocking Smad2 activation
    Li, JH
    Zhu, HJ
    Huang, XR
    Lai, KN
    Johnson, RJ
    Lan, HY
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2002, 13 (06): : 1464 - 1472