Artificial neural network modelling to predict the efficiency of aluminium sacrificial anode

被引:0
作者
Rezaei, Amir [1 ]
机构
[1] Univ Tehran, Sch Met & Mat Engn, Tehran, Iran
关键词
Aluminium; artificial neural network; cathodic protection; sacrificial anode; ELECTROCHEMICAL PERFORMANCE; CORROSION BEHAVIOR; ALLOY; MG; TI; MICROSTRUCTURE; ZINC; BI;
D O I
10.1080/1478422X.2023.2252258
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Study explores the potential of a deep learning-based approach for predicting the current efficiency of aluminium sacrificial anodes in marine environments. The model takes into account various input variables, including the chemical composition of the sacrificial anode, pH, dissolved oxygen (DO), temperature, pressure, cathode electrode, current density, and the ratio of the surface area of the cathode to anode, with the anode current efficiency serving as the output variable. Utilising artificial neural networks in this study shows a mean absolute percentage error of 6.4% and 7.8% for the training and validation for predicting the current efficiency. The proposed model shows promising potential to predict the current efficiency of aluminium sacrificial anodes and improve the design of cathodic protection systems based on aluminium sacrificial anodes.
引用
收藏
页码:747 / 754
页数:8
相关论文
共 38 条
[1]   Predicting the Parabolic Rate Constants of High-Temperature Oxidation of Ti Alloys Using Machine Learning [J].
Bhattacharya, Somesh Kr. ;
Sahara, Ryoji ;
Narushima, Takayuki .
OXIDATION OF METALS, 2020, 94 (3-4) :205-218
[2]   Comparing SVM and ANN based Machine Learning Methods for Species Identification of Food Contaminating Beetles [J].
Bisgin, Halil ;
Bera, Tanmay ;
Ding, Hongjian ;
Semey, Howard G. ;
Wu, Leihong ;
Liu, Zhichao ;
Barnes, Amy E. ;
Langley, Darryl A. ;
Pava-Ripoll, Monica ;
Vyas, Himansu J. ;
Tong, Weida ;
Xu, Joshua .
SCIENTIFIC REPORTS, 2018, 8
[3]   Neural network modelling studies of steam oxidised kinetic behaviour of advanced steels and Ni-based alloys at 800 °C for 3000 h [J].
Dudziak, T. ;
Gajewski, P. ;
Sniezynski, B. ;
Deodeshmukh, V. ;
Witkowska, M. ;
Ratuszek, W. ;
Chrusciel, K. .
CORROSION SCIENCE, 2018, 133 :94-111
[4]   Evaluating the performance of zinc and aluminum sacrificial anodes in artificial seawater [J].
Farooq, Ameeq ;
Hamza, Muhammad ;
Ahmed, Qadeer ;
Deen, Kashif Mairaj .
ELECTROCHIMICA ACTA, 2019, 314 :135-141
[5]   Efficiency and characterization study of low voltage current sacrificial anode on Al-Zn-Cu and Al-Zn-Si alloy [J].
Ferdian, D. ;
Yudha, D. R. ;
Ario, M. W. ;
Yunita, T. ;
Sulistijono .
INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS, 2019, 541
[6]   Enhanced Reinforcement Learning Method Combining One-Hot Encoding-Based Vectors for CNN-Based Alternative High-Level Decisions [J].
Gu, Bonwoo ;
Sung, Yunsick .
APPLIED SCIENCES-BASEL, 2021, 11 (03) :1-15
[7]   Effects of Gallium Addition on the Microstructure and Electrochemical Properties of Al-Zn-Bi Series Alloy Anode [J].
Hao, Qingguo ;
Wen, Jiuba ;
He, Junguang ;
Ma, Jingling .
ADVANCED STRUCTURAL MATERIALS, 2011, 686 :107-112
[8]   Influence of Ga and Bi on electrochemical performance of Al-Zn-Sn sacrificial anodes [J].
He Jun-guang ;
Wen Jiu-ba ;
Li Xu-dong ;
Wang Guo-wei ;
Xu Chun-hua .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2011, 21 (07) :1580-1586
[9]   Modeling the corrosion behavior of Ni-Cr-Mo-V high strength steel in the simulated deep sea environments using design of experiment and artificial neural network [J].
Hu, Qiangfei ;
Liu, Yuchen ;
Zhang, Tao ;
Geng, Shujiang ;
Wang, Fuhui .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (01) :168-175
[10]  
Jha NK., 2023, P 38 INT C MACH LEAR, P4839