An integrated and fast imaging quality assurance phantom for a 0.35 T magnetic resonance imaging linear accelerator

被引:1
作者
Sohn, James J. [1 ]
Lim, Sara [1 ]
Das, Indra J. [1 ]
Yadav, Poonam [1 ]
机构
[1] Northwestern Univ, Northwestern Mem Hosp, Dept Radiat Oncol, Feinberg Sch Med, Chicago, IL 60611 USA
关键词
Magnetic resonance imaging linear accelerator; Imaging; Magnetic resonance imaging guided radiation; therapy; MRIdian; QA; Magphan; ACR alternatives; MR-LINAC; RADIATION; IMPLEMENTATION;
D O I
10.1016/j.phro.2023.100462
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Periodic imaging quality assurance (QA) of magnetic resonance imaging linear accelerator (MRL) is critical. The feasibility of a new MRL imaging phantom used for QA in the low field was evaluated with auto-mated image analysis of various parameters for accuracy and reproducibility. Methods and materials: The new MRL imaging phantom was scanned across every 30 degrees of the gantry, having the on/off state of the linac in a low-field MRL system using three magnetic resonance imaging sequences: true fast imaging with steady-state precession (TrueFISP), T1 weighted (T1W), and T2 weighted (T2W). The DICOM files were used to calculate the imaging parameters: geometric distortion, uniformity, resolution, signal-to-noise ratio (SNR), and laser alignment. The point spread function (PSF) and edge spread function (ESF) were also calculated for resolution analysis. Results: The phantom data showed a small standard deviation -and high consistency for each imaging parameter. The highest variability in data was observed with the true fast imaging sequence at the calibration angle, which was expected because of low resolution and short scan time (25 sec). The mean magnitude of the largest distortion measured within 200 mm diameter with TrueFISP was 0.31 & PLUSMN; 0.05 mm. The PSF, ESF, signal uni-formity, and SNR measurements remained consistent. Laser alignment traditional offsets and angular deviation remained consistent. Conclusions: The new MRL imaging phantom is reliable, reproducible, time effective, and easy to use for a 0.35 T MRL system. The results promise a more streamlined, time-saving, and error-free QA process for low-field MRL adapted in our clinical setting.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Tumor-site specific geometric distortions in high field integrated magnetic resonance linear accelerator radiotherapy [J].
Hasler, Signe Winther ;
Bernchou, Uffe ;
Bertelsen, Anders ;
van Veldhuizen, Elisabeth ;
Schytte, Tine ;
Hansen, Vibeke Nordmark ;
Brink, Carsten ;
Mahmood, Faisal .
PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2020, 15 :100-104
[22]   Feasibility and accuracy of quantitative imaging on a 1.5 T MR-linear accelerator [J].
Kooreman, Ernst S. ;
van Houdt, Petra J. ;
Nowee, Marlies E. ;
van Pelt, Vivian W. J. ;
Tijssen, Rob H. N. ;
Paulson, Eric S. ;
Gurney-Champion, Oliver J. ;
Wang, Jihong ;
Koetsveld, Folkert ;
van Buuren, Laurens D. ;
ter Beek, Leon C. ;
van der Heide, Uulke A. .
RADIOTHERAPY AND ONCOLOGY, 2019, 133 :156-162
[23]   Delivered dose quantification in prostate radiotherapy using online 3D cine imaging and treatment log files on a combined 1.5T magnetic resonance imaging and linear accelerator system [J].
Kontaxis, Charis ;
Keizer, Daan M. de Muinck ;
Kerkmeijer, Linda G. W. ;
Willigenburg, Thomas ;
den Hartogh, Mariska D. ;
van Zyp, Jochem R. N. van der Voort ;
de Groot-van Breugel, Eline N. ;
Hes, Jochem ;
Raaymakers, Bas W. ;
Lagendijk, Jan J. W. ;
de Boer, Hans C. J. .
PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2020, 15 :23-29
[24]   Reconstructed dose and geometric coverage for tight margins using intrafraction re-planning on an integrated magnetic resonance imaging and linear accelerator system for prostate cancer patients [J].
van den Berg, Ingeborg ;
Zachiu, Cornel ;
de Groot-van Breugel, Eline N. ;
Willigenburg, Thomas ;
Bol, Gijsbert H. ;
Lagendijk, Jan J. W. ;
Raaymakers, Bas W. ;
van Melick, Harm H. E. ;
van den Berg, Cornelis A. T. ;
van der Voort van Zyp, Jochem R. N. ;
de Boer, Johannes C. J. .
PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2025, 34
[25]   Open-source, customizable phantom for low-field magnetic resonance imaging [J].
Jordanova, Kalina V. ;
Russek, Stephen E. ;
Keenan, Kathryn E. .
MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2025,
[26]   Copper T 380A IUD and magnetic resonance imaging [J].
Zieman, Miriam ;
Kanal, Emanuel .
CONTRACEPTION, 2007, 75 (02) :93-95
[27]   Fast magnetic resonance spectroscopic imaging (MRSI) using wavelet encoding and parallel imaging: In vitro results [J].
Fu, Yao ;
Serrai, Hacene .
JOURNAL OF MAGNETIC RESONANCE, 2011, 211 (01) :45-51
[28]   Predictive value of 0.35 T magnetic resonance imaging radiomic features in stereotactic ablative body radiotherapy of pancreatic cancer: A pilot study [J].
Simpson, Garrett ;
Spieler, Benjamin ;
Dogan, Nesrin ;
Portelance, Lorraine ;
Mellon, Eric A. ;
Kwon, Deukwoo ;
Ford, John C. ;
Yang Fei .
MEDICAL PHYSICS, 2020, 47 (08) :3682-3690
[29]   Comprehensive Image Quality Evaluation and Motion Phantom Studies of an Ultra-Fast (6-Second) Cone-Beam Computed Tomography Imaging System on a Ring Gantry Linear Accelerator [J].
Zhao, Hui ;
Nelson, Geoff ;
Sarkar, Vikren ;
Oare, Courtney ;
Szegedi, Martin ;
St James, Sara ;
Kunz, Jeremy ;
Price, Ryan ;
Huang, Y. Jessica .
ADVANCES IN RADIATION ONCOLOGY, 2025, 10 (02)
[30]   Quantitative magnetic resonance imaging on hybrid magnetic resonance linear accelerators: Perspective on technical and clinical validation [J].
Thorwarth, Daniela ;
Ege, Matthias ;
Nachbar, Marcel ;
Moennich, David ;
Gani, Cihan ;
Zips, Daniel ;
Boeke, Simon .
PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2020, 16 :69-73