Wigner function for the quantum mechanics on a sphere

被引:1
作者
Kowalski, K. [1 ]
Lawniczak, K. [1 ]
机构
[1] Univ Lodz, Dept Theoret Phys, ul Pomorska 149-153, PL-90236 Lodz, Poland
关键词
Wigner function; Quantization on a sphereS2; Coherent states on a sphereS2; TRANSFORM;
D O I
10.1016/j.aop.2023.169428
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Wigner quasiprobability function for a particle on a sphere is introduced and its properties investigated. In opposition to alternative approaches this Wigner function depends on the points of the classical phase space, that is the cotangent bundle T*S2. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 15 条
[11]   Wigner distribution function for Euclidean systems [J].
Nieto, LM ;
Atakishiyev, NM ;
Chumakov, SM ;
Wolf, KB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (16) :3875-3895
[12]   Transformation of complex spherical harmonics under rotations [J].
Romanowski, Zbigniew ;
Krukowski, Stanislaw .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (50) :15071-15082
[13]  
Schoke R., 1991, MAT ANN, V291, P409
[14]   Particle on the sphere: group-theoretic quantization in the presence of a magnetic monopole [J].
Silva, Rodrigo Andrade e ;
Jacobson, Ted .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (23)
[15]   The Segal-Bargmann transform on a symmetric space of compact type [J].
Stenzel, MB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 165 (01) :44-58