Wigner function for the quantum mechanics on a sphere

被引:1
|
作者
Kowalski, K. [1 ]
Lawniczak, K. [1 ]
机构
[1] Univ Lodz, Dept Theoret Phys, ul Pomorska 149-153, PL-90236 Lodz, Poland
关键词
Wigner function; Quantization on a sphereS2; Coherent states on a sphereS2; TRANSFORM;
D O I
10.1016/j.aop.2023.169428
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Wigner quasiprobability function for a particle on a sphere is introduced and its properties investigated. In opposition to alternative approaches this Wigner function depends on the points of the classical phase space, that is the cotangent bundle T*S2. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Connection between Bohmian and quantum mechanics via the Wigner function
    Bonilla-Licea, Moise
    Schuch, Dieter
    PHYSICS LETTERS A, 2022, 423
  • [2] Wigner functions and coherent states for the quantum mechanics on a circle
    Kowalski, K.
    Lawniczak, K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (27)
  • [3] Wigner Measures in Noncommutative Quantum Mechanics
    C. Bastos
    N. C. Dias
    J. N. Prata
    Communications in Mathematical Physics, 2010, 299 : 709 - 740
  • [4] Distribution functions in quantum mechanics and Wigner functions
    Kuz'menkov, LS
    Maksimov, SG
    THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 131 (02) : 641 - 650
  • [5] Quantum mechanics in phase space: first order comparison between the Wigner and the Fermi function
    G. Benenti
    G. Strini
    The European Physical Journal D, 2010, 57 : 117 - 121
  • [6] Distribution Functions in Quantum Mechanics and Wigner Functions
    L. S. Kuz'menko
    S. G. Maksimov
    Theoretical and Mathematical Physics, 2002, 131 : 641 - 650
  • [7] Wigner functions for the Landau problem in noncommutative quantum mechanics
    Dulat, S.
    Li, Kang
    Wang, Jianhua
    THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 167 (02) : 628 - 635
  • [8] Wigner functions for the Landau problem in noncommutative quantum mechanics
    S. Dulat
    Kang Li
    Jianhua Wang
    Theoretical and Mathematical Physics, 2011, 167 : 628 - 635
  • [9] Wigner function quantum Monte Carlo
    Shifren, L
    Ferry, DK
    PHYSICA B-CONDENSED MATTER, 2002, 314 (1-4) : 72 - 75
  • [10] The quantum Wigner function in a magnetic field
    Materdey, TB
    Seyler, CE
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (25): : 4555 - 4592