Subcritical nonlocal problems with mixed boundary conditions

被引:4
作者
Molica Bisci, Giovanni [1 ]
Ortega, Alejandro [2 ]
Vilasi, Luca [3 ]
机构
[1] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Italy
[2] Univ Nacl Educ Distancia, Fac Ciencias, Dept Matemat Fundamentales, Madrid 28040, Spain
[3] Univ Messina, Dept Math & Comp Sci, Phys Sci & Earth Sci, Viale F Stagno Dalcontres 31, I-98166 Messina, Italy
关键词
Fractional Laplacian; variational methods; del-theorems; mixed boundary data; superlinear and subcritical nonlinearities; FRACTIONAL LAPLACIAN; ELLIPTIC PROBLEM; REGULARITY;
D O I
10.1142/S166436072350011X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using linking and del-theorems in this paper we prove the existence of multiple solutions for the following nonlocal problem with mixed Dirichlet-Neumann boundary data, {(-Delta)(s) u = lambda u + f(x, u) in Omega u = 0 on Sigma(D), partial derivative u/partial derivative v = 0 on Sigma(N,) where (-Delta)(s), s is an element of (1/2, 1), is the spectral fractional Laplacian operator, Omega subset of R-N, N > 2s, is a smooth bounded domain, lambda > 0 is a real parameter, nu is the outward normal to partial derivative Omega, Sigma(D), Sigma(N) are smooth (N - 1)-dimensional submanifolds of partial derivative Omega such that Sigma(D) boolean OR Sigma(N) = partial derivative Omega, Sigma(D) boolean AND Sigma(N) = : empty set Sigma(D) boolean AND (Sigma) over bar (N) = G is a smooth (N - 2)-dimensional submanifold of partial derivative Omega.
引用
收藏
页数:23
相关论文
共 22 条
  • [1] Appolloni L, 2023, ANN GLOB ANAL GEOM, V63, DOI 10.1007/s10455-023-09885-1
  • [2] On some critical problems for the fractional Laplacian operator
    Barrios, B.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) : 6133 - 6162
  • [3] Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions
    Barrios, Begona
    Medina, Maria
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (01) : 475 - 495
  • [4] Bisci GM, 2016, ENCYCLOP MATH APPL, V162
  • [5] Bisci GM, 2017, DIFFER INTEGRAL EQU, V30, P641
  • [6] A concave-convex elliptic problem involving the fractional Laplacian
    Braendle, C.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) : 39 - 71
  • [7] Positive solutions of nonlinear problems involving the square root of the Laplacian
    Cabre, Xavier
    Tan, Jinggang
    [J]. ADVANCES IN MATHEMATICS, 2010, 224 (05) : 2052 - 2093
  • [8] An extension problem related to the fractional Laplacian
    Caffarelli, Luis
    Silvestre, Luis
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) : 1245 - 1260
  • [9] Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations
    Capella, Antonio
    Davila, Juan
    Dupaigne, Louis
    Sire, Yannick
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) : 1353 - 1384
  • [10] Regularity of solutions to a fractional elliptic problem with mixed Dirichlet-Neumann boundary data
    Carmona, Jose
    Colorado, Eduardo
    Leonori, Tommaso
    Ortega, Alejandro
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (04) : 521 - 539