Dynamic Optimal Transport on Networks

被引:1
作者
Burger, Martin [1 ]
Humpert, Ina [2 ]
Pietschmann, Jan-Frederik [3 ]
机构
[1] Deutsch Elektronen Synchrotron DESY, Computat Imaging Grp & Helmholtz Imaging, Hamburg, Germany
[2] Westfal Wilhelms Univ WWU Munster, Inst Anal & Computat Math, Munster, Germany
[3] Univ Augsburg, Inst Math, MNTF, Augsburg, Germany
关键词
Metric graph; optimal transport; gradient flow; convex duality; entropy; HELLINGER-KANTOROVICH DISTANCE; EQUATIONS;
D O I
10.1051/cocv/2023027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study a dynamic optimal transport problem on a network. Despite the cost for transport along the edges, an additional cost, scaled with a parameter & kappa;, has to be paid for interchanging mass between edges and vertices. We show existence of minimisers using duality and discuss the relationship of the model to other metrics such as Fisher-Rao and the classical Wasserstein metric. Finally, we examine the limiting behaviour of the model in terms of the parameter & kappa;.
引用
收藏
页数:23
相关论文
共 30 条
[1]  
Ambrosio L, 2008, LECT MATH, P1
[2]   Gas flow in pipeline networks [J].
Banda, Mapundi K. ;
Herty, Michael ;
Klar, Axel .
NETWORKS AND HETEROGENEOUS MEDIA, 2006, 1 (01) :41-56
[3]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[4]   NEW LOWER SEMICONTINUITY RESULTS FOR NONCONVEX FUNCTIONALS DEFINED ON MEASURES [J].
BOUCHITTE, G ;
BUTTAZZO, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (07) :679-692
[5]  
Brasco L., 2012, J. Math. Sci., V181, P755
[6]   Flows on networks: recent results and perspectives [J].
Bressan, Alberto ;
Canic, Suncica ;
Garavello, Mauro ;
Herty, Michael ;
Piccoli, Benedetto .
EMS SURVEYS IN MATHEMATICAL SCIENCES, 2014, 1 (01) :47-111
[7]   Nonlinear mobility continuity equations and generalized displacement convexity [J].
Carrillo, J. A. ;
Lisini, S. ;
Savare, G. ;
Slepcev, D. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (04) :1273-1309
[8]  
Chizat L., 2010, FOUND COMPUT MATH
[9]   Unbalanced optimal transport: Dynamic and Kantorovich formulations [J].
Chizat, Lenaic ;
Peyre, Gabriel ;
Schmitzer, Bernhard ;
Vialard, Francois-Xavier .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (11) :3090-3123
[10]  
Erbar M., 2021, GRADIENT FLOW FORMUL