A cardiologist's guide to machine learning in cardiovascular disease prognosis prediction

被引:24
作者
Kresoja, Karl-Patrik [1 ,2 ]
Unterhuber, Matthias [1 ,2 ]
Wachter, Rolf [3 ,4 ,5 ]
Thiele, Holger [1 ,2 ]
Lurz, Philipp [1 ,2 ]
机构
[1] Univ Leipzig, Heart Ctr Leipzig, Dept Internal Med Cardiol, Struempellstr 39, D-04289 Leipzig, Germany
[2] Leipzig Heart Sci Heart Ctr Leipzig, Leipzig Heart Inst, Leipzig, Germany
[3] Univ Hosp Leipzig, Dept Cardiol, Leipzig, Germany
[4] Univ Med Gottingen, Clin Cardiol & Pneumol, Gottingen, Germany
[5] German Cardiovasc Res Ctr DZHK, Partner Site Gottingen, Gottingen, Germany
关键词
Machine learning; Atherosclerosis; Heart failure; Arrhythmia; Genetics; Artificial intelligence; HEART-FAILURE; ARTIFICIAL-INTELLIGENCE; PRECISION MEDICINE; RISK SCORE; MORTALITY; SURVIVAL; FUTURE; MODEL; STATE;
D O I
10.1007/s00395-023-00982-7
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A modern-day physician is faced with a vast abundance of clinical and scientific data, by far surpassing the capabilities of the human mind. Until the last decade, advances in data availability have not been accompanied by analytical approaches. The advent of machine learning (ML) algorithms might improve the interpretation of complex data and should help to translate the near endless amount of data into clinical decision-making. ML has become part of our everyday practice and might even further change modern-day medicine. It is important to acknowledge the role of ML in prognosis prediction of cardiovascular disease. The present review aims on preparing the modern physician and researcher for the challenges that ML might bring, explaining basic concepts but also caveats that might arise when using these methods. Further, a brief overview of current established classical and emerging concepts of ML disease prediction in the fields of omics, imaging and basic science is presented.
引用
收藏
页数:12
相关论文
共 86 条
[11]   Kaggle forecasting competitions: An overlooked learning opportunity [J].
Bojer, Casper Solheim ;
Meldgaard, Jens Peder .
INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (02) :587-603
[12]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[13]   Neural/Bayes network predictor for inheritable cardiac disease pathogenicity and phenotype [J].
Burghardt, Thomas P. ;
Ajtai, Katalin .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2018, 119 :19-27
[14]   POINTS OF SIGNIFICANCE Statistics versus machine learning [J].
Bzdok, Danilo ;
Altman, Naomi ;
Krzywinski, Martin .
NATURE METHODS, 2018, 15 (04) :232-233
[15]   The novel cystatin C, lactate, interleukin-6, and N-terminal pro-B-type natriuretic peptide (CLIP)-based mortality risk score in cardiogenic shock after acute myocardial infarction [J].
Ceglarek, Uta ;
Schellong, Paul ;
Rosolowski, Maciej ;
Scholz, Markus ;
Willenberg, Anja ;
Kratzsch, Juergen ;
Zeymer, Uwe ;
Fuernau, Georg ;
De Waha-Thiele, Suzanne ;
Buettner, Petra ;
Jobs, Alexander ;
Freund, Anne ;
Desch, Steffen ;
Feistritzer, Hans-Josef ;
Isermann, Berend ;
Thiery, Joachim ;
Poess, Janine ;
Thiele, Holger .
EUROPEAN HEART JOURNAL, 2021, 42 (24) :2344-2352
[16]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[17]   Introduction to Machine Learning, Neural Networks, and Deep Learning [J].
Choi, Rene Y. ;
Coyner, Aaron S. ;
Kalpathy-Cramer, Jayashree ;
Chiang, Michael F. ;
Campbell, J. Peter .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (02)
[18]   Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards [J].
Churpek, Matthew M. ;
Yuen, Trevor C. ;
Winslow, Christopher ;
Meltzer, David O. ;
Kattan, Michael W. ;
Edelson, Dana P. .
CRITICAL CARE MEDICINE, 2016, 44 (02) :368-374
[19]   Predicting changes to INa from missense mutations in human SCN5A [J].
Clerx, Michael ;
Heijman, Jordi ;
Collins, Pieter ;
Volders, Paul G. A. .
SCIENTIFIC REPORTS, 2018, 8
[20]   Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study [J].
Commandeur, Frederic ;
Slomka, Piotr J. ;
Goeller, Markus ;
Chen, Xi ;
Cadet, Sebastien ;
Razipour, Aryabod ;
McElhinney, Priscilla ;
Gransar, Heidi ;
Cantu, Stephanie ;
Miller, Robert J. H. ;
Rozanski, Alan ;
Achenbach, Stephan ;
Tamarappoo, Balaji K. ;
Berman, Daniel S. ;
Dey, Damini .
CARDIOVASCULAR RESEARCH, 2020, 116 (14) :2216-2225