A cardiologist's guide to machine learning in cardiovascular disease prognosis prediction

被引:24
作者
Kresoja, Karl-Patrik [1 ,2 ]
Unterhuber, Matthias [1 ,2 ]
Wachter, Rolf [3 ,4 ,5 ]
Thiele, Holger [1 ,2 ]
Lurz, Philipp [1 ,2 ]
机构
[1] Univ Leipzig, Heart Ctr Leipzig, Dept Internal Med Cardiol, Struempellstr 39, D-04289 Leipzig, Germany
[2] Leipzig Heart Sci Heart Ctr Leipzig, Leipzig Heart Inst, Leipzig, Germany
[3] Univ Hosp Leipzig, Dept Cardiol, Leipzig, Germany
[4] Univ Med Gottingen, Clin Cardiol & Pneumol, Gottingen, Germany
[5] German Cardiovasc Res Ctr DZHK, Partner Site Gottingen, Gottingen, Germany
关键词
Machine learning; Atherosclerosis; Heart failure; Arrhythmia; Genetics; Artificial intelligence; HEART-FAILURE; ARTIFICIAL-INTELLIGENCE; PRECISION MEDICINE; RISK SCORE; MORTALITY; SURVIVAL; FUTURE; MODEL; STATE;
D O I
10.1007/s00395-023-00982-7
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A modern-day physician is faced with a vast abundance of clinical and scientific data, by far surpassing the capabilities of the human mind. Until the last decade, advances in data availability have not been accompanied by analytical approaches. The advent of machine learning (ML) algorithms might improve the interpretation of complex data and should help to translate the near endless amount of data into clinical decision-making. ML has become part of our everyday practice and might even further change modern-day medicine. It is important to acknowledge the role of ML in prognosis prediction of cardiovascular disease. The present review aims on preparing the modern physician and researcher for the challenges that ML might bring, explaining basic concepts but also caveats that might arise when using these methods. Further, a brief overview of current established classical and emerging concepts of ML disease prediction in the fields of omics, imaging and basic science is presented.
引用
收藏
页数:12
相关论文
共 86 条
[1]   Establishment of Specialized Clinical Cardiovascular Genetics Programs: Recognizing the Need and Meeting Standards: A Scientific Statement From the American Heart Association [J].
Ahmad, Ferhaan ;
McNally, Elizabeth M. ;
Ackerman, Michael J. ;
Baty, Linda C. ;
Day, Sharlene M. ;
Kullo, Iftikhar J. ;
Madueme, Peace C. ;
Maron, Martin S. ;
Martinez, Matthew W. ;
Salberg, Lisa ;
Taylor, Matthew R. ;
Wilcox, Janel E. .
CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2019, 12 (06) :286-305
[2]   Machine learning algorithms for predicting coronary artery disease: efforts toward an open source solution [J].
Akella, Aravind ;
Akella, Sudheer .
FUTURE SCIENCE OA, 2021, 7 (06)
[3]  
Anderson Michael, 2019, AMA J Ethics, V21, pE125, DOI 10.1001/amajethics.2019.125
[4]  
[Anonymous], 2011, Thinking, fast and slow
[5]   Precision medicine in cardiology [J].
Antman, Elliott M. ;
Loscalzo, Joseph .
NATURE REVIEWS CARDIOLOGY, 2016, 13 (10) :591-602
[6]   Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction Without Volume Measurements Using a Machine Learning Algorithm Mimicking a Human Expert [J].
Asch, Federico M. ;
Poilvert, Nicolas ;
Abraham, Theodore ;
Jankowski, Madeline ;
Cleve, Jayne ;
Adams, Michael ;
Romano, Nathanael ;
Hong, Ha ;
Mor-Avi, Victor ;
Martin, Randolph P. ;
Lang, Roberto M. .
CIRCULATION-CARDIOVASCULAR IMAGING, 2019, 12 (09)
[7]  
Atienza F, 2000, J AM MED INFORM ASSN, P32
[8]   An Introduction to Machine Learning [J].
Badillo, Solveig ;
Banfai, Balazs ;
Birzele, Fabian ;
Davydov, Iakov I. ;
Hutchinson, Lucy ;
Kam-Thong, Tony ;
Siebourg-Polster, Juliane ;
Steiert, Bernhard ;
Zhang, Jitao David .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2020, 107 (04) :871-885
[9]   Liquid Biopsy and eHealth in Heart Failure The Future Is Now [J].
Bayes-Genis, Antoni ;
Lanfear, David .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (17) :2206-2208
[10]   Machine learning versus conventional clinical methods in guiding management of heart failure patients-a systematic review [J].
Bazoukis, George ;
Stavrakis, Stavros ;
Zhou, Jiandong ;
Bollepalli, Sandeep Chandra ;
Tse, Gary ;
Zhang, Qingpeng ;
Singh, Jagmeet P. ;
Armoundas, Antonis A. .
HEART FAILURE REVIEWS, 2021, 26 (01) :23-34