On a class of Cheeger inequalities

被引:0
作者
Briani, Luca [1 ]
Buttazzo, Giuseppe [1 ]
Prinari, Francesca [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Pisa, Dipartimento Sci Agr Alimentari & Agroambientali, Via Borghetto 80, I-56124 Pisa, Italy
关键词
Cheeger constant; Principal eigenvalue; Shape optimization; p-Laplacian; EIGENVALUE; UNIQUENESS; FREQUENCY; INRADIUS;
D O I
10.1007/s10231-022-01255-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a general version of the Cheeger inequality by considering the shape functional F-p,F-q(Omega) = lambda(1/p)(p)(Omega)/lambda q(1/q)(Omega). The infimum and the supremum of F-p,F-q are studied in the class of all domains Omega of R-d and in the subclass of convex domains. In the latter case the issue concerning the existence of an optimal domain for F-p,F-q is discussed.
引用
收藏
页码:657 / 678
页数:22
相关论文
共 50 条
  • [41] A class of implicit variational inequalities and applications to frictional contact
    Capatina, Anca
    Cocou, Marius
    Raous, Michel
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (14) : 1804 - 1827
  • [42] On the Cheeger problem for rotationally invariant domains
    Bobkov, Vladimir
    Parini, Enea
    MANUSCRIPTA MATHEMATICA, 2021, 166 (3-4) : 503 - 522
  • [43] Inner-Cheeger Opening and Applications
    Velasco-Forero, Santiago
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO SIGNAL AND IMAGE PROCESSING, 2015, 9082 : 75 - 85
  • [44] APPROXIMATION OF MAXIMAL CHEEGER SETS BY PROJECTION
    Carlier, Guillaume
    Comte, Myriam
    Peyre, Gabriel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (01): : 139 - 150
  • [45] Lyapunov-type inequalities for a class of fractional differential equations
    O'Regan, Donal
    Samet, Bessem
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [46] Lyapunov-type inequalities for a class of fractional differential equations
    Donal O’Regan
    Bessem Samet
    Journal of Inequalities and Applications, 2015
  • [47] A class of hemivariational inequalities for nonstationary Navier-Stokes equations
    Fang, Changjie
    Han, Weimin
    Migorski, Stanislaw
    Sofonea, Mircea
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 31 : 257 - 276
  • [48] On the Cheeger constant for distance-regular graphs
    Qiao, Zhi
    Koolen, Jack H.
    Markowsky, Greg
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 173
  • [49] Boundary variation method for the generalized Cheeger problem
    Ionescu, Ioan R.
    Lupascu-Stamate, Oana
    APPLIED NUMERICAL MATHEMATICS, 2019, 140 : 199 - 214
  • [50] Characterization of Cheeger sets for convex subsets of the plane
    Kawohl, Bernd
    Lachand-Robert, Thomas
    PACIFIC JOURNAL OF MATHEMATICS, 2006, 225 (01) : 103 - 118