On a class of Cheeger inequalities

被引:0
作者
Briani, Luca [1 ]
Buttazzo, Giuseppe [1 ]
Prinari, Francesca [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Pisa, Dipartimento Sci Agr Alimentari & Agroambientali, Via Borghetto 80, I-56124 Pisa, Italy
关键词
Cheeger constant; Principal eigenvalue; Shape optimization; p-Laplacian; EIGENVALUE; UNIQUENESS; FREQUENCY; INRADIUS;
D O I
10.1007/s10231-022-01255-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a general version of the Cheeger inequality by considering the shape functional F-p,F-q(Omega) = lambda(1/p)(p)(Omega)/lambda q(1/q)(Omega). The infimum and the supremum of F-p,F-q are studied in the class of all domains Omega of R-d and in the subclass of convex domains. In the latter case the issue concerning the existence of an optimal domain for F-p,F-q is discussed.
引用
收藏
页码:657 / 678
页数:22
相关论文
共 50 条
  • [31] THE CHEEGER CONSTANT OF CURVED STRIPS
    Krejcirik, David
    Pratelli, Aldo
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 254 (02) : 309 - 333
  • [32] The Cheeger constant of curved tubes
    David Krejčiřík
    Gian Paolo Leonardi
    Petr Vlachopulos
    Archiv der Mathematik, 2019, 112 : 429 - 436
  • [33] The First Cheeger Constant of a Simplex
    Kozlov, Dmitry N.
    GRAPHS AND COMBINATORICS, 2017, 33 (06) : 1543 - 1564
  • [34] The First Cheeger Constant of a Simplex
    Dmitry N. Kozlov
    Graphs and Combinatorics, 2017, 33 : 1543 - 1564
  • [35] Classilification by Cheeger constant regularization
    Chang, Hsun-Hsien
    Moura, Jose M. F.
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 773 - 776
  • [36] The Cheeger constant of curved tubes
    Krejcirik, David
    Leonardi, Gian Paolo
    Vlachopulos, Petr
    ARCHIV DER MATHEMATIK, 2019, 112 (04) : 429 - 436
  • [37] Phase Field Approach to Optimal Packing Problems and Related Cheeger Clusters
    Bogosel, Beniamin
    Bucur, Dorin
    Fragala, Ilaria
    APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 81 (01) : 63 - 87
  • [38] Phase Field Approach to Optimal Packing Problems and Related Cheeger Clusters
    Beniamin Bogosel
    Dorin Bucur
    Ilaria Fragalà
    Applied Mathematics & Optimization, 2020, 81 : 63 - 87
  • [39] A class of implicit variational inequalities and applications to frictional contact
    Capatina, Anca
    Cocou, Marius
    Raous, Michel
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (14) : 1804 - 1827
  • [40] MULTIPLICITY RESULTS TO A CLASS OF VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
    Bonanno, Gabriele
    Winkert, Patrick
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2014, 43 (02) : 493 - 516