On a class of Cheeger inequalities

被引:0
|
作者
Briani, Luca [1 ]
Buttazzo, Giuseppe [1 ]
Prinari, Francesca [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Pisa, Dipartimento Sci Agr Alimentari & Agroambientali, Via Borghetto 80, I-56124 Pisa, Italy
关键词
Cheeger constant; Principal eigenvalue; Shape optimization; p-Laplacian; EIGENVALUE; UNIQUENESS; FREQUENCY; INRADIUS;
D O I
10.1007/s10231-022-01255-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a general version of the Cheeger inequality by considering the shape functional F-p,F-q(Omega) = lambda(1/p)(p)(Omega)/lambda q(1/q)(Omega). The infimum and the supremum of F-p,F-q are studied in the class of all domains Omega of R-d and in the subclass of convex domains. In the latter case the issue concerning the existence of an optimal domain for F-p,F-q is discussed.
引用
收藏
页码:657 / 678
页数:22
相关论文
共 50 条
  • [21] Dimensional lower bounds for contact surfaces of Cheeger sets
    Caroccia, M.
    Ciani, S.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 157 : 1 - 44
  • [22] A NOTE ON CHEEGER SETS
    Figalli, Alessio
    Maggi, Francesco
    Pratelli, Aldo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (06) : 2057 - 2062
  • [23] On the higher Cheeger problem
    Bobkov, Vladimir
    Parini, Enea
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 97 : 575 - 600
  • [24] An Overview on the Cheeger Problem
    Leonardi, Gian Paolo
    NEW TRENDS IN SHAPE OPTIMIZATION, 2015, 166 : 117 - 139
  • [25] Every Graph with a Positive Cheeger Constant Contains a Tree with a Positive Cheeger Constant
    I. Benjamini
    O. Schramm
    Geometric & Functional Analysis GAFA, 1997, 7 : 403 - 419
  • [26] The Cheeger constant as limit of Sobolev-type constants
    Ercole, Grey
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (04) : 1553 - 1567
  • [28] Anisotropic Cheeger Sets and Applications
    Caselles, Vicent
    Facciolo, Gabriele
    Meinhardt, Enric
    SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (04): : 1211 - 1254
  • [29] A class of weighted Hardy type inequalities in RN
    Canale, Anna
    RICERCHE DI MATEMATICA, 2024, 73 (01) : 619 - 631
  • [30] Penalty method for a class of differential variational inequalities
    Liu, Zhenhai
    Zeng, Shengda
    APPLICABLE ANALYSIS, 2021, 100 (07) : 1574 - 1589