Representation Learning and Reinforcement Learning for Dynamic Complex Motion Planning System

被引:3
|
作者
Zhou, Chengmin [1 ,2 ]
Huang, Bingding [2 ]
Franti, Pasi [1 ]
机构
[1] Univ Eastern Finland, Sch Comp, Machine Learning Grp, Joensuu 80100, Finland
[2] Shenzhen Technol Univ, Coll Big Data & Internet, Shenzhen 518118, Peoples R China
关键词
Intelligent robot; motion planning; reinforcement learning (RL); representation learning;
D O I
10.1109/TNNLS.2023.3247160
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Indoor motion planning challenges researchers because of the high density and unpredictability of moving obstacles. Classical algorithms work well in the case of static obstacles but suffer from collisions in the case of dense and dynamic obstacles. Recent reinforcement learning (RL) algorithms provide safe solutions for multiagent robotic motion planning systems. However, these algorithms face challenges in convergence: slow convergence speed and suboptimal converged result. Inspired by RL and representation learning, we introduced the ALN-DSAC: a hybrid motion planning algorithm where attention-based long short-term memory (LSTM) and novel data replay combine with discrete soft actor-critic (SAC). First, we implemented a discrete SAC algorithm, which is the SAC in the setting of discrete action space. Second, we optimized existing distancebased LSTM encoding by attention-based encoding to improve the data quality. Third, we introduced a novel data replay method by combining the online learning and offline learning to improve the efficacy of data replay. The convergence of our ALN-DSAC outperforms that of the trainable state of the arts. Evaluations demonstrate that our algorithm achieves nearly 100% success with less time to reach the goal in motion planning tasks when compared to the state of the arts. The test code is available at https://github.com/CHUENGMINCHOU/ALN-DSAC.
引用
收藏
页码:11049 / 11063
页数:15
相关论文
共 50 条
  • [21] Reinforcement learning techniques applied to the motion planning of a robotic manipulator
    Ribeiro, Francisco M.
    Pinto, Vitor H.
    2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC), 2022, : 173 - 178
  • [22] Survey of Deep Reinforcement Learning for Motion Planning of Autonomous Vehicles
    Aradi, Szilard
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) : 740 - 759
  • [23] Monte Carlo Tree Search With Reinforcement Learning for Motion Planning
    Weingertner, Philippe
    Ho, Minnie
    Timofeev, Andrey
    Aubert, Sebastien
    Pita-Gil, Guillermo
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [24] Optimal motion planning by reinforcement learning in autonomous mobile vehicles
    Gomez, M.
    Gonzalez, R. V.
    Martinez-Marin, T.
    Meziat, D.
    Sanchez, S.
    ROBOTICA, 2012, 30 : 159 - 170
  • [25] Hierarchical Reinforcement Learning Approach for Motion Planning in Mobile Robotics
    Buitrago-Martinez, Andrea
    De la Rosa R, Fernando
    Lozano-Martinez, Fernando
    2013 IEEE LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS 2013), 2013, : 83 - 88
  • [26] Energy-Efficient Reinforcement Learning for Motion Planning of AUV
    Wen, Jiayi
    Zhu, Jingwei
    Lin, Yejin
    Zhang, Guichen
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON UNDERWATER SYSTEM TECHNOLOGY: THEORY AND APPLICATIONS, USYS, 2022,
  • [27] Humanoid motion planning of robotic arm based on reinforcement learning
    Yang A.
    Chen Y.
    Xu Y.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2021, 42 (12): : 136 - 145
  • [28] Hierarchical Task and Motion Planning through Deep Reinforcement Learning
    Newaz, Abdullah Al Redwan
    Alam, Tauhidul
    2021 FIFTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC 2021), 2021, : 100 - 105
  • [29] Path Planning for a Mobile Robot in Unknown Dynamic Environments Using Integrated Environment Representation and Reinforcement Learning
    Zhang, Jian
    2019 AUSTRALIAN & NEW ZEALAND CONTROL CONFERENCE (ANZCC), 2019, : 258 - 263
  • [30] Integrating Reinforcement Learning with Models of Representation Learning
    Jones, Matt
    Canas, Fabian
    COGNITION IN FLUX, 2010, : 1258 - 1263