Boundedness of Journe operators with matrix weights

被引:9
作者
Domelevo, K. [1 ]
Kakaroumpas, S. [1 ]
Petermichl, S. [1 ]
Soler i Gibert, O. [1 ]
机构
[1] Julius Maximilians Univ Wurzburg, Campus Hubland Nord,Emil Fischer Str 40, D-97074 Wurzburg, Germany
基金
欧洲研究理事会;
关键词
Journe operators; Matrix weights; Biparameter weighted estimates; Sparse domination; SINGULAR-INTEGRALS; A(P) WEIGHTS; SPACES; REPRESENTATION; INEQUALITIES; BMO;
D O I
10.1016/j.jmaa.2023.127956
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a biparameter theory for matrix weights and provide various biparameter matrix-weighted bounds for Journe operators as well as other central operators under the assumption of the product matrix Muckenhoupt condition. In particular, we provide a complete theory for biparameter Journe operator bounds on matrix -weighted L2 spaces. We also achieve bounds in the general case of matrix-weighted Lp spaces, for 1 < p < infinity for parapro duct-free Journe operators. Finally, we expose an open problem involving a matrix-weighted Fefferman-Stein inequality, on which our methods rely in the general setting of matrix-weighted bounds for arbitrary Journe operators and p not equal 2. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:66
相关论文
共 53 条
[1]  
Aamari E, Lecture notes 2 for the course Geometric Inference
[2]  
Barron A., 2019, Sparse bounds in harmonic analysis and semiperiodic estimates
[3]  
Barron A, 2017, Arxiv, DOI arXiv:1709.05009
[4]  
BERNARD A, 1979, B SCI MATH, V103, P297
[5]   Carleson's counterexample and a scale of Lorentz-BMO spaces on the bitorus [J].
Blasco, Oscar ;
Pott, Sandra .
ARKIV FOR MATEMATIK, 2005, 43 (02) :289-305
[6]  
Bownik M, 2023, Arxiv, DOI arXiv:2210.09443
[7]  
Carleson L., 1974, Mittag-Leffler Report, V7
[8]   CARLESON MEASURE ON THE BI-DISC [J].
CHANG, SYA .
ANNALS OF MATHEMATICS, 1979, 109 (03) :613-620
[9]   SOME RECENT DEVELOPMENTS IN FOURIER-ANALYSIS AND HP-THEORY ON PRODUCT DOMAINS [J].
CHANG, SYA ;
FEFFERMAN, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :1-43
[10]   Vector A2 weights and a Hardy-Littlewood maximal function [J].
Christ, M ;
Goldberg, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (05) :1995-2002