Charge distribution in CsFAPbI3 spatially resolved by scanning microwave impedance microscopy

被引:2
作者
van der Werf, Verena M. [1 ]
Zhao, Jiashang [1 ]
Koning, Jim S. [1 ]
Nespoli, Jasmeen [1 ]
Thieme, Jos [1 ]
Bus, Marcel [1 ]
Savenije, Tom J. [1 ]
机构
[1] Delft Univ Technol, Fac Appl Sci, Dept Chem Engn, NL-2629 HZ Delft, Netherlands
关键词
OPEN-CIRCUIT VOLTAGE; HALIDE PEROVSKITES;
D O I
10.1016/j.xcrp.2023.101491
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-halide perovskites deposited by wet-chemical deposition have demonstrated great potential for various electronic applications, including solar cells. A remaining question is how light induced excess charges become distributed over such polycrystalline material. Here, we examine the local conductive properties of MAPbI3 and CsFAPbI3 by using scanning microwave microscopy (sMIM) in the dark and light. sMIM is an atomic force microscopy (AFM)-based technique measuring variations of the in-phase and out-of-phase signals due to changes in the tip-sample interaction, yielding MIM-Re and MIM-Im images, respectively. Combining this information leads to a picture for CsFAPbI3 in which excess charges are distributed evenly over the grains, but due to local defect-rich areas, possibly related to different crystal facets, local perturbations in carrier concentration exist. For solar cells, this distribution in carrier concentration under illumination leads to variation in the local Fermi level splitting, which should be suppressed to reduce the voltage deficit.
引用
收藏
页数:13
相关论文
共 35 条
[21]   Subgrain Special Boundaries in Halide Perovskite Thin Films Restrict Carrier Diffusion [J].
Li, Wenhao ;
Yadavalli, Srinivas K. ;
Lizarazo-Ferro, David ;
Chen, Min ;
Zhou, Yuanyuan ;
Padture, Nitin P. ;
Zia, Rashid .
ACS ENERGY LETTERS, 2018, 3 (11) :2669-2670
[22]   Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells [J].
Li, Zhen ;
Li, Bo ;
Wu, Xin ;
Sheppard, Stephanie A. ;
Zhang, Shoufeng ;
Gao, Danpeng ;
Long, Nicholas J. ;
Zhu, Zonglong .
SCIENCE, 2022, 376 (6591) :416-+
[23]   Minimizing non-radiative recombination losses in perovskite solar cells [J].
Luo, Deying ;
Su, Rui ;
Zhang, Wei ;
Gong, Qihuang ;
Zhu, Rui .
NATURE REVIEWS MATERIALS, 2020, 5 (01) :44-60
[24]  
NREL, 2023, Best Research -Cell Efficiencies: Rev. 24-01-2023
[25]   Surface Defect Formation and Passivation in Formamidinium Lead Triiodide (FAPbI3) Perovskite Solar Cell Absorbers [J].
Oner, S. M. ;
Sezen, E. ;
Yordanli, M. S. ;
Karakoc, E. ;
Deger, C. ;
Yavuz, I .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (01) :324-330
[26]  
Rubin K.A., 2019, Electronic and Quantum Materials, DOI [10.1007/978-3-030-15612-1_1, DOI 10.1007/978-3-030-15612-1_1]
[27]   Multimodal microscopy characterization of halide perovskite semiconductors: Revealing a new world (dis)order [J].
Stranks, Samuel D. .
MATTER, 2021, 4 (12) :3852-3866
[28]   Heterogeneity at multiple length scales in halide perovskite semiconductors [J].
Tennyson, Elizabeth M. ;
Doherty, Tiarnan A. S. ;
Stranks, Samuel D. .
NATURE REVIEWS MATERIALS, 2019, 4 (09) :573-587
[29]   Nanoscale Charge Accumulation and Its Effect on Carrier Dynamics in Tri-cation Perovskite Structures [J].
Toth, David ;
Hailegnaw, Bekele ;
Richheimer, Filipe ;
Castro, Fernando A. ;
Kienberger, Ferry ;
Scharber, Markus C. ;
Wood, Sebastian ;
Gramse, Georg .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (42) :48057-48066
[30]   Dielectric and ferroic properties of metal halide perovskites [J].
Wilson, Jacob N. ;
Frost, Jarvist M. ;
Wallace, Suzanne K. ;
Walsh, Aron .
APL MATERIALS, 2019, 7 (01)