An algebra of observables for de Sitter space

被引:117
作者
Chandrasekaran, Venkatesa [1 ]
Longo, Roberto [2 ]
Penington, Geoff [1 ,3 ,4 ]
Witten, Edward [1 ]
机构
[1] Inst Adv Study, Sch Nat Sci, 1 Einstein Dr, Princeton, NJ 08540 USA
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[3] Univ Calif Berkeley, Ctr Theoret Phys, Dept Phys, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
关键词
Cosmological models; de Sitter space; QUANTUM LINEARIZATION INSTABILITIES; PARTICLE CREATION; SCALAR FIELD; DUALITY; ENTROPY;
D O I
10.1007/JHEP02(2023)082
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We describe an algebra of observables for a static patch in de Sitter space, with operators gravitationally dressed to the worldline of an observer. The algebra is a von Neumann algebra of Type II1. There is a natural notion of entropy for a state of such an algebra. There is a maximum entropy state, which corresponds to empty de Sitter space, and the entropy of any semiclassical state of the Type II1 algebras agrees, up to an additive constant independent of the state, with the expected generalized entropy S-gen = (A/4G(N)) + S-out. An arbitrary additive constant is present because of the renormalization that is involved in defining entropy for a Type II1 algebra.
引用
收藏
页数:56
相关论文
共 56 条
  • [1] VACUUM STATES IN DE-SITTER SPACE
    ALLEN, B
    [J]. PHYSICAL REVIEW D, 1985, 32 (12): : 3136 - 3149
  • [2] The entropy of Hawking radiation
    Almheiri, Ahmed
    Hartman, Thomas
    Maldacena, Juan
    Shaghoulian, Edgar
    Tajdini, Amirhossein
    [J]. REVIEWS OF MODERN PHYSICS, 2021, 93 (03)
  • [3] Quantum de Sitter horizon entropy from quasicanonical bulk, edge, sphere and topological string partition functions
    Anninos, Dionysios
    Denef, Frederik
    Law, Y. T. Albert
    Sun, Zimo
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
  • [4] TYPE OF VON NEUMANN ALGEBRA ASSOCIATED WITH FREE FIELD
    ARAKI, H
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1964, 32 (06): : 956 - &
  • [5] ARAKI H, 1963, HELV PHYS ACTA, V36, P132
  • [6] Araki H., 1976, PUBL RES I MATH SCI, V11, P809, DOI DOI 10.2977/PRIMS/1195191148
  • [7] Banks T, 2001, INT J MOD PHYS A, V16, P910, DOI 10.1142/S0217751X01003998
  • [8] Banks T., 2005, SCIPP0501
  • [9] Banks T., 2001, RUNHETC20015
  • [10] Banks T, 2006, J HIGH ENERGY PHYS