Self-assembly epitaxial lithium ferrite nanostructures with tunable magnetic properties

被引:0
|
作者
Shen, Lvkang [1 ,2 ]
Lan, Guohua [1 ,2 ]
Lu, Lu [1 ,2 ]
Dai, Yanzhu [1 ,2 ]
Ma, Chunrui [3 ]
Cao, Cuimei [2 ,4 ]
Jiang, Changjun [2 ,4 ]
You, Caiyin [4 ]
Lu, Xiaoli [5 ]
Liu, Ming [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Microelect, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[3] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Mat Sci & Engn, Xian 710049, Peoples R China
[5] Xidian Univ, Sch Microelect, State Key Discipline Lab Wide Band Gap Semicond Te, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-assemble; Epitaxial thin film; Spintronics; Ferromagnetic resonance; Magnetic materials; FERROMAGNETIC-RESONANCE; SPIN DYNAMICS; ARRAYS; NANOPARTICLES; ANISOTROPY;
D O I
10.1016/j.ceramint.2022.10.358
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-performance ordered arrays of nanostructure has attracted significant attention due to the needs for miniaturization in electronic and spintronic devices. However, the traditional templete-assisted method often entails expensive equipment and complicated processing. Herein, a series of high quality LiFe5O8 (LFO) arrays are obtained by chemically etching the MgO phase in the self-assembly (LFO)1:(MgO)x nanocomposite films. The LFO arrays show excellent epitaxial quality and nano-island or nano-pillar morphology, which can be easily fabricated by controlling the thickness and chemical component of the grown nanocomposite films. In comparison with the LFO planar film, the LFO nanopillar arrays exhibit higher saturation magnetization, lower nonzero coercivity and remanence. Moreover, the morphology of the nanostructures can effectively modulate the ferromagnetic resonance spectra of the LFO nanopillar arrays, which can be explained by the calculated demagnetization field. This work shows that nanostructure engineering is very useful to modulate the magnetic properties and to design compact microwave magnetism devices.
引用
收藏
页码:6222 / 6227
页数:6
相关论文
共 50 条
  • [21] Self-assembly of nanostructures and nanomaterials
    Berbezier, Isabelle
    De Crescenzi, Maurizio
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 : 1397 - 1398
  • [22] Describing self-assembly of nanostructures
    Jonoska, Natasha
    McColm, Gregory L.
    SOFSEM 2008: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2008, 4910 : 66 - 73
  • [23] Nanostructures through self-assembly
    Angew Chem (Int Ed Engl), 1 (93-95):
  • [24] Artificial tripeptide scaffolds for self-assembly of heteromultimetallic structures with tunable electronic and magnetic properties
    Gilmartin, BP
    McLaughlin, RL
    Williams, ME
    CHEMISTRY OF MATERIALS, 2005, 17 (22) : 5446 - 5454
  • [25] PREPARATION AND PROPERTIES OF EPITAXIAL LITHIUM FERRITE
    MEE, JE
    BESSER, PJ
    WHITCOMB, EC
    AMERICAN CERAMIC SOCIETY BULLETIN, 1969, 48 (08): : 809 - &
  • [26] Self-assembly and magnetic properties of cobalt nanoparticles
    Yang, HT
    Shen, CM
    Su, YK
    Yang, TZ
    Gao, HJ
    Wang, YG
    APPLIED PHYSICS LETTERS, 2003, 82 (26) : 4729 - 4731
  • [27] Self-assembly and photocatalytic properties of clustered and flowerlike CdS nanostructures
    Xu Di
    Gao Ai-Mei
    Deng Wen-Li
    ACTA PHYSICO-CHIMICA SINICA, 2008, 24 (07) : 1219 - 1224
  • [28] Nanoscale isoindigo-carriers: self-assembly and tunable properties
    Pashirova, Tatiana N.
    Bogdanov, Andrei V.
    Musin, Lenar I.
    Voronina, Julia K.
    Nizameev, Irek R.
    Kadirov, Marsil K.
    Mironov, Vladimir F.
    Zakharova, Lucia Ya.
    Latypov, Shamil K.
    Sinyashin, Oleg G.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2017, 8 : 313 - 324
  • [29] Preparation of ZnO nanostructures and Their Self-assembly
    Huang, Huandi
    Yang, Wentao
    Wang, Lina
    ADVANCED ENGINEERING MATERIALS II, PTS 1-3, 2012, 535-537 : 380 - 383
  • [30] Self-Assembly of Chiral Plasmonic Nanostructures
    Lan, Xiang
    Wang, Qiangbin
    ADVANCED MATERIALS, 2016, 28 (47) : 10499 - 10507