Automatic Urban Scene-Level Binary Change Detection Based on a Novel Sample Selection Approach and Advanced Triplet Neural Network

被引:25
作者
Fang, Hong [1 ,2 ]
Guo, Shanchuan [1 ,2 ]
Wang, Xin [3 ]
Liu, Sicong [4 ]
Lin, Cong [5 ]
Du, Peijun [1 ,2 ]
机构
[1] Nanjing Univ, Sch Geog & Ocean Sci, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Key Lab Land Satellite Remote Sensing Applicat,Min, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Jiangsu Ctr Collaborat Innovat Geog Informat Resou, Nanjing 210023, Peoples R China
[3] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenvironm Prot, Chengdu 610059, Peoples R China
[4] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
[5] Nanjing Res Inst Surveying Mapping & Geotech Inves, Nanjing 210019, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Automatic change detection; binary scene-level change detection; remote sensing; semantic changes; urban area; LAND-USE; IMAGES; CLASSIFICATION; SEGMENTATION;
D O I
10.1109/TGRS.2023.3235917
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Change detection is a process of identifying changed ground objects by comparing image pairs obtained at different times. Compared with the pixel-level and object-level change detection, scene-level change detection can provide the semantic changes at image level, so it is important for many applications related to change descriptions and explanations such as urban functional area change monitoring. Automatic scene-level change detection approaches do not require ground truth used for training, making them more appealing in practical applications than nonautomatic methods. However, the existing automatic scene-level change detection methods only utilize low-level and mid-level features to extract changes between bitemporal images, failing to fully exploit the deep information. This article proposed a novel automatic binary scene-level change detection approach based on deep learning to address these issues. First, the pretrained VGG-16 and change vector analysis are adopted for scene-level direct predetection to produce a scene-level pseudo-change map. Second, pixel-level classification is implemented by using decision tree, and a pixel-level to scene-level conversion strategy is designed to generate the other scene-level pseudo-change map. Third, the scene-level training samples are obtained by fusing the two pseudo-change maps. Finally, the binary scene-level change map is produced by training a novel scene change detection triplet network (SCDTN). The proposed SCDTN integrates a late-fusion subnetwork and an early fusion subnetwork, comprehensively mining the deep information in each raw image as well as the temporal correlation between two raw images. Experiments were performed on a public dataset and a new challenging dataset, and the results demonstrated the effectiveness and superiority of the proposed approach
引用
收藏
页数:18
相关论文
共 83 条
  • [1] Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification
    Anwer, Rao Muhammad
    Khan, Fahad Shahbaz
    van de Weijer, Joost
    Molinier, Matthieu
    Laaksonen, Jorma
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 138 : 74 - 85
  • [2] A supervised hierarchical segmentation of remote-sensing images using a committee of multi-scale convolutional neural networks
    Basaeed, Essa
    Bhaskar, Harish
    Hill, Paul
    Al-Mualla, Mohammed
    Bull, David
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (07) : 1671 - 1691
  • [3] Simple Yet Effective Fine-Tuning of Deep CNNs Using an Auxiliary Classification Loss for Remote Sensing Scene Classification
    Bazi, Yakoub
    Al Rahhal, Mohamad M.
    Alhichri, Haikel
    Alajlan, Naif
    [J]. REMOTE SENSING, 2019, 11 (24)
  • [4] Unsupervised Change Detection Using Convolutional-Autoencoder Multiresolution Features
    Bergamasco, Luca
    Saha, Sudipan
    Bovolo, Francesca
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] A split-based approach to unsupervised change detection in large-size multitemporal images: Application to tsunami-damage assessment
    Bovolo, Francesca
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (06): : 1658 - 1670
  • [6] Chen HRX, 2022, Arxiv, DOI arXiv:2201.10953
  • [7] Deep Siamese Multi-scale Convolutional Network for Change Detection in Multi-temporal VHR Images
    Chen, Hongruixuan
    Wu, Chen
    Du, Bo
    Zhang, Liangpei
    [J]. 2019 10TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2019,
  • [8] Change Detection in Multisource VHR Images via Deep Siamese Convolutional Multiple-Layers Recurrent Neural Network
    Chen, Hongruixuan
    Wu, Chen
    Du, Bo
    Zhang, Liangpei
    Wang, Le
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2848 - 2864
  • [9] DASNet: Dual Attentive Fully Convolutional Siamese Networks for Change Detection in High-Resolution Satellite Images
    Chen, Jie
    Yuan, Ziyang
    Peng, Jian
    Chen, Li
    Huang, Haozhe
    Zhu, Jiawei
    Liu, Yu
    Li, Haifeng
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 1194 - 1206
  • [10] FCCDN: Feature constraint network for VHR image change detection
    Chen, Pan
    Zhang, Bing
    Hong, Danfeng
    Chen, Zhengchao
    Yang, Xuan
    Li, Baipeng
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 187 : 101 - 119