From big data to better patient outcomes

被引:20
作者
Hulsen, Tim [5 ]
Friedecky, David [6 ,7 ]
Renz, Harald [8 ,9 ,10 ]
Melis, Els [11 ]
Vermeersch, Pieter [1 ,2 ,3 ]
Fernandez-Calle, Pilar [3 ,4 ]
机构
[1] Univ Hosp Leuven, Clin Dept, Lab Med, Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Cardiovasc Sci, Leuven, Belgium
[3] European Federat Clin Chem & Lab Med EFLM, Milan, Italy
[4] Hosp Univ La Paz, Dept Lab Med, Madrid, Spain
[5] Dept Hosp Serv & Informat, Philips Res, Eindhoven, Netherlands
[6] Univ Hosp Olomouc, Lab Inherited Metab Disorders, Dept Clin Biochem, Olomouc, Czech Republic
[7] Palacky Univ Olomouc, Fac Med & Dent, Olomouc, Czech Republic
[8] German Ctr Lung Res DZL, Inst Lab Med, Marburg, Germany
[9] Philipps Univ Marburg, Univ Giessen & Marburg Lung Ctr UGMLC, Marburg, Germany
[10] Sechenov Univ, IM Sechenov Moscow State Med Univ 1, Dept Clin Immunol & Allergy, Lab Immunopathol, Moscow, Russia
[11] Ortho Clin Diagnost, Zaventem, Belgium
关键词
artificial intelligence; big data; data science; patient outcomes; personalized healthcare; precision medicine; MODELS;
D O I
10.1515/cclm-2022-1096
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Among medical specialties, laboratory medicine is the largest producer of structured data and must play a crucial role for the efficient and safe implementation of big data and artificial intelligence in healthcare. The area of personalized therapies and precision medicine has now arrived, with huge data sets not only used for experimental and research approaches, but also in the "real world ". Analysis of real world data requires development of legal, procedural and technical infrastructure. The integration of all clinical data sets for any given patient is important and necessary in order to develop a patient-centered treatment approach. Data-driven research comes with its own challenges and solutions. The Findability, Accessibility, Interoperability, and Reusability (FAIR) Guiding Principles provide guidelines to make data findable, accessible, interoperable and reusable to the research community. Federated learning, standards and ontologies are useful to improve robustness of artificial intelligence algorithms working on big data and to increase trust in these algorithms. When dealing with big data, the univariate statistical approach changes to multivariate statistical methods significantly shifting the potential of big data. Combining multiple omics gives previously unsuspected information and provides understanding of scientific questions, an approach which is also called the systems biology approach. Big data and artificial intelligence also offer opportunities for laboratories and the In Vitro Diagnostic industry to optimize the productivity of the laboratory, the quality of laboratory results and ultimately patient outcomes, through tools such as predictive maintenance and "moving average " based on the aggregate of patient results.
引用
收藏
页码:580 / 586
页数:7
相关论文
共 43 条
[1]   FINANCIAL RATIOS, DISCRIMINANT ANALYSIS AND PREDICTION OF CORPORATE BANKRUPTCY [J].
ALTMAN, EI .
JOURNAL OF FINANCE, 1968, 23 (04) :589-609
[2]  
[Anonymous], 2020, Communications from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions, A European Strategy for Data COM, P66
[3]  
[Anonymous], 2020, Producing disability-inclusive data: why it matters and what it takes
[4]   Predicting the Reasons of Customer Complaints: A First Step Toward Anticipating Quality Issues of In Vitro Diagnostics Assays with Machine Learning [J].
Aris-Brosou, Stephane ;
Kim, James ;
Li, Li ;
Liu, Hui .
JMIR MEDICAL INFORMATICS, 2018, 6 (02) :292-304
[5]   Artificial Intelligence and Human Trust in Healthcare: Focus on Clinicians [J].
Asan, Onur ;
Bayrak, Alparslan Emrah ;
Choudhury, Avishek .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (06)
[6]   Can a combination of average of normals and "real time" External Quality Assurance replace Internal Quality Control? [J].
Badrick, Tony ;
Graham, Peter .
CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2018, 56 (04) :549-553
[7]  
Bender D, 2013, COMP MED SY, P326, DOI 10.1109/CBMS.2013.6627810
[8]   Using big data for quality assessment in oncology [J].
Broughman, James R. ;
Chen, Ronald C. .
JOURNAL OF COMPARATIVE EFFECTIVENESS RESEARCH, 2016, 5 (03) :309-319
[9]   Systems biology of asthma and allergic diseases: A multiscale approach [J].
Bunyavanich, Supinda ;
Schadt, Eric E. .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2015, 135 (01) :31-42
[10]   The Gene Ontology Resource: 20 years and still GOing strong [J].
Carbon, S. ;
Douglass, E. ;
Dunn, N. ;
Good, B. ;
Harris, N. L. ;
Lewis, S. E. ;
Mungall, C. J. ;
Basu, S. ;
Chisholm, R. L. ;
Dodson, R. J. ;
Hartline, E. ;
Fey, P. ;
Thomas, P. D. ;
Albou, L. P. ;
Ebert, D. ;
Kesling, M. J. ;
Mi, H. ;
Muruganujian, A. ;
Huang, X. ;
Poudel, S. ;
Mushayahama, T. ;
Hu, J. C. ;
LaBonte, S. A. ;
Siegele, D. A. ;
Antonazzo, G. ;
Attrill, H. ;
Brown, N. H. ;
Fexova, S. ;
Garapati, P. ;
Jones, T. E. M. ;
Marygold, S. J. ;
Millburn, G. H. ;
Rey, A. J. ;
Trovisco, V. ;
dos Santos, G. ;
Emmert, D. B. ;
Falls, K. ;
Zhou, P. ;
Goodman, J. L. ;
Strelets, V. B. ;
Thurmond, J. ;
Courtot, M. ;
Osumi-Sutherland, D. ;
Parkinson, H. ;
Roncaglia, P. ;
Acencio, M. L. ;
Kuiper, M. ;
Laegreid, A. ;
Logie, C. ;
Lovering, R. C. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D330-D338