DTSSNet: Dynamic Training Sample Selection Network for UAV Object Detection

被引:25
作者
Chen, Li [1 ]
Liu, Chaoyang [2 ]
Li, Wei [3 ]
Xu, Qizhi [1 ]
Deng, Hongbin [1 ]
机构
[1] Beijing Inst Technol, Sch Mechatron Engn, Beijing 100081, Peoples R China
[2] Chinese Peoples Liberat Army, Unit 32180, Beijing 100832, Peoples R China
[3] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Training; Object detection; Feature extraction; Autonomous aerial vehicles; Detectors; Costs; Annotations; Attention enhanced feature; dynamic training sample selection (DTSS); object detection; unmanned aerial vehicle (UAV) aerial imagery;
D O I
10.1109/TGRS.2023.3348555
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Object detectors often struggle with accuracy and generalization when applied to aerial imagery, primarily due to the following challenges: 1) great scale variation of objects in aerial images: both extremely small and large objects are visible in the same image; and 2) an extreme imbalance of the training sample between positive and negative anchors: there are several positive ground truth (GT) anchors and an abundance of negative anchors. In this article, we propose a dynamic training sample selection network (DTSSNet) to solve the above-mentioned problems in two dimensions. An attention-enhanced feature module (AEFM) is proposed to enhance the basic features by focusing on both channel and semantic information related to targets. This module provides more valuable information for accurately classifying objects of different scales. To tackle the imbalance in training samples, this article implements a dynamic training sample selection (DTSS) module that divides the training samples based on GT information. This module dynamically selects samples, ensuring a more balanced representation of positive and negative anchors, leading to improved learning. Importantly, the combination of AEFM and DTSS does not introduce any additional computational costs. Experimental evaluations on the VisDrone2019-DET dataset demonstrate that DTSSNet outperforms base detectors and generic approaches. Furthermore, the effectiveness of DTSSNet is validated on the UAVDT benchmark dataset, where it achieves state-of-the-art performance.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 64 条
[1]   ShuffleDet: Real-Time Vehicle Detection Network in On-Board Embedded UAV Imagery [J].
Azimi, Seyed Majid .
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT II, 2019, 11130 :88-99
[2]   Vehicle Detection From UAV Imagery With Deep Learning: A Review [J].
Bouguettaya, Abdelmalek ;
Zarzour, Hafed ;
Kechida, Ahmed ;
Taberkit, Amine Mohammed .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) :6047-6067
[3]   Cascade R-CNN: Delving into High Quality Object Detection [J].
Cai, Zhaowei ;
Vasconcelos, Nuno .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6154-6162
[4]  
Chen K, 2019, Arxiv, DOI arXiv:1906.07155
[5]   Parallel Residual Bi-Fusion Feature Pyramid Network for Accurate Single-Shot Object Detection [J].
Chen, Ping-Yang ;
Chang, Ming-Ching ;
Hsieh, Jun-Wei ;
Chen, Yong-Sheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :9099-9111
[6]   Anchor-Free Oriented Proposal Generator for Object Detection [J].
Cheng, Gong ;
Wang, Jiabao ;
Li, Ke ;
Xie, Xingxing ;
Lang, Chunbo ;
Yao, Yanqing ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[7]  
Dai JF, 2016, ADV NEUR IN, V29
[8]   Learning RoI Transformer for Oriented Object Detection in Aerial Images [J].
Ding, Jian ;
Xue, Nan ;
Long, Yang ;
Xia, Gui-Song ;
Lu, Qikai .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2844-2853
[9]   VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results [J].
Du, Dawei ;
Zhu, Pengfei ;
Wen, Longyin ;
Bian, Xiao ;
Ling, Haibin ;
Hu, Qinghua ;
Peng, Tao ;
Zheng, Jiayu ;
Wang, Xinyao ;
Zhang, Yue ;
Bo, Liefeng ;
Shi, Hailin ;
Zhu, Rui ;
Kumar, Aashish ;
Li, Aijin ;
Zinollayev, Almaz ;
Askergaliyev, Anuar ;
Schumann, Arne ;
Mao, Binjie ;
Lee, Byeongwon ;
Liu, Chang ;
Chen, Changrui ;
Pan, Chunhong ;
Huo, Chunlei ;
Yu, Da ;
Cong, Dechun ;
Zeng, Dening ;
Pailla, Dheeraj Reddy ;
Li, Di ;
Wang, Dong ;
Cho, Donghyeon ;
Zhang, Dongyu ;
Bai, Furui ;
Jose, George ;
Gao, Guangyu ;
Liu, Guizhong ;
Xiong, Haitao ;
Qi, Hao ;
Wang, Haoran ;
Qiu, Heqian ;
Li, Hongliang ;
Lu, Huchuan ;
Kim, Ildoo ;
Kim, Jaekyum ;
Shen, Jane ;
Lee, Jihoon ;
Ge, Jing ;
Xu, Jingjing ;
Zhou, Jingkai ;
Meier, Jonas .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :213-226
[10]   The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking [J].
Du, Dawei ;
Qi, Yuankai ;
Yu, Hongyang ;
Yang, Yifan ;
Duan, Kaiwen ;
Li, Guorong ;
Zhang, Weigang ;
Huang, Qingming ;
Tian, Qi .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :375-391