Some new invariant sum tests and MAD tests for the assessment of Benford's law

被引:1
作者
Koessler, Wolfgang [1 ]
Lenz, Hans-J. [2 ]
Wang, Xing D. [1 ]
机构
[1] Humboldt Univ, Inst Informat, Rudower Chaussee 25, D-12489 Berlin, Germany
[2] Free Univ Berlin, Inst Stat & Okonometrie, Boltzmannstr 20, D-14195 Berlin, Germany
关键词
Benford law; Goodness of fit test; Sum invariance; Data fraud; Data manipulation; Data quality;
D O I
10.1007/s00180-024-01463-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Benford law is used world-wide for detecting non-conformance or data fraud of numerical data. It says that the significand of a data set from the universe is not uniformly, but logarithmically distributed. Especially, the first non-zero digit is One with an approximate probability of 0.3. There are several tests available for testing Benford, the best known are Pearson's chi 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi <^>2$$\end{document}-test, the Kolmogorov-Smirnov test and a modified version of the MAD-test. In the present paper we propose some tests, three of the four invariant sum tests are new and they are motivated by the sum invariance property of the Benford law. Two distance measures are investigated, Euclidean and Mahalanobis distance of the standardized sums to the orign. We use the significands corresponding to the first significant digit as well as the second significant digit, respectively. Moreover, we suggest inproved versions of the MAD-test and obtain critical values that are independent of the sample sizes. For illustration the tests are applied to specifically selected data sets where prior knowledge is available about being or not being Benford. Furthermore we discuss the role of truncation of distributions.
引用
收藏
页码:3779 / 3800
页数:22
相关论文
共 35 条
  • [11] Data validity and statistical conformity with Benford?s Law
    Cerqueti, Roy
    Maggi, Mario
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 144
  • [12] THE KOLMOGOROV-SMIRNOV, CRAMER-VON MISES TESTS
    DARLING, DA
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1957, 28 (04): : 823 - 838
  • [13] De Haan L., 2006, SPRING S OPERAT RES, V21, DOI 10.1007/0-387-34471-3
  • [14] Not the first digit! Using Benford's law to detect fraudulent scientific data
    Diekmann, Andreas
    [J]. JOURNAL OF APPLIED STATISTICS, 2007, 34 (03) : 321 - 329
  • [15] Falk M, 1989, P C OB 6 12 DEC 1987, P1
  • [16] Hein J, 2012, ANAESTHESIST, V61, P543, DOI 10.1007/s00101-012-2029-x
  • [17] Kazemitabar J., 2022, INT J AUDIT TECHNOL, V4, P279, DOI [10.1504/IJAUDIT.2022.129433, DOI 10.1504/IJAUDIT.2022.129433]
  • [18] Kolmogorov A., 1933, Giornale dell'Istituto Italiano degli Attuari, V4, P83, DOI DOI 10.12691/AJAMS-1-1-2
  • [19] Kossler W, 2024, FRONTIERS STAT QUALI, V14
  • [20] Kossler W., 1999, ALLG STAT ARCH, V83, P416